
CSE 331
Software Design & Implementation

Autumn 2023
Section 10 – Final Review



Administrivia
• HW9

– Due tomorrow @11pm

• Final
– Tuesday, 12/12, MGH 389
– Exam A: 2:30 – 4:20
– Exam B: 4:30 – 6:20 
– Please arrive a couple minutes early
– No notecards, all needed definitions will be included

• Final review session
– Monday, 12/11, 7-8:30pm
– CSE1 (Allen), across breakout rooms
– Bring questions related to practice exams or general 

concepts



Course Evals!!
• Please fill them out!
• We appreciate the feedback (TAs and Kevin both)

– We will actually read them, so any suggestions will be 
considered!

• If 50% of responses are completed, we will give everyone an 
additional day to complete HW9!! 🎉🎉
– New on time deadline would be Saturday, 12/9
– Deadline with late day would be Sunday, 12/10



Final topics
• All topics covered by midterm are fair game

(Remember, midterm was largely final practice)
– Reasoning about Recursion
– Reasoning about Loops
– Writing Methods
– Testing

• New topics that may be included:
– Writing the code of a for loop, given the loop idea and invariant.
– Writing or proving correct the methods of classes that implement 

mutable ADTs



ADT
• MutableIntCursor ADT represents a list of integers with the 

ability to insert new characters at the “cursor index” within the list.
– cursor index can be moved forward or backward

• LineCountingCursor implements MutableIntCursor by:
– using the abstract state (an index and a list of values) as its 

concrete state 
– + records the number of newline characters (so class can 

easily, quickly determine the number of lines in the text)

• Reminder: familiar functions on last page of WS!



Problem 1b

Explain, in English, why the facts listed in Pre will be true when the 
function is called:

• The first fact is from the representation invariant, which must be 
true when each method starts



Problem 1c

Explain, in English, why the facts listed in Post need to be true 
when the function completes in order for insert to be complete:



Problem 1c

• The first fact is the statement of effects clause of the spec after 
we apply the abstraction function: 
– "index” part of abstract state is stored in this.index field
– “values” part of abstract state is stored in this.values field.

• The second fact is required by the representation invariant, which 
must be checked at the end of any mutator method.



Problem 2
• Fill in the missing parts of the method so it is correct with the 

given invariant

• Loop idea: 
– skip past elements in this.values until we reach one that 

equals the given number or we hit the end

• Invariant: 
– this.values is split up between skipped and rest, with 

skipped being the front part in reverse order
– no element of skipped is equal to the number m

• Do not write any other loops or call any other methods. The only 
list functions that should be needed are cons and len



Problem 2

1 2 m 3 nilthis.values:



Problem 2

1 2 m 3 nil

1 2 m 3 nil

Easiest way to satisfy the invariant

rest:

skipped: nil

this.values:



Problem 2

1

2 m 3 nil

nil

1 2 m 3 nil

While rest.hd != m (need to check rest != nil first),
remove and append rest.hd to skipped
(cons adds to front which reverses the list which matches 
the invariant)

rest:

skipped:

this.values:



Problem 2

12

m 3 nil

nil

1 2 m 3 nil

rest:

skipped:

this.values:



Problem 2

12

m 3 nil

nil

1 2 m 3 nil

When we exit the loop
- If rest = nil then we didn’t find m
- Otherwise, Index of m is the length of the skipped list 

rest:

skipped:

this.values:



Problem 2

nil
this.values

rest !== nil && rest.hd !== x

len(skipped)

skipped = cons(rest.hd, skipped);
rest = rest.tl;



Problem 3
• Fill removeNextLine so it removes all the text on the next line: 

text between the first and second newline characters after the 
cursor index
– remove second newline, but leave cursor index in place
– If there are no newlines after cursor, then do nothing
– If there is only one newline after cursor, remove all text after it

• method of LineCountingCursor, so you can access this.index
and this.values

• Can use any Familiar List Functions from final page and assume 
they’ve been translated to TS

• Hint: split-at function from HW5 may be useful, assume the TS 
translation of it is called splitAt



Problem 3

Index



B

Problem 3

Index

A Index

[A, B] = split(index, values)



B

Problem 3

hi

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D

CIndex

OR
\n

No \n after cursor

\n after cursor



B

Problem 3

Index

A Index

[A, B] = split(index, values)

[C, D] = splitAt(B, newline)

CIndex

No change:

No \n after cursor

Index



B

Problem 3

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D\n\n after cursor

[E, F] = splitAt(D.tl, newline)
ENo second \n

Second \n E F\n
OR



B

Problem 3

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D\n\n after cursor

[E, F] = splitAt(D.tl, newline)
ENo second \n

Remove everything after \n
A CIndex \n



B

Problem 3

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D\n\n after cursor

[E, F] = splitAt(D.tl, newline)
Second \n

Remove next line:
A CIndex

E F

F\n

\n



Problem 3

const [A, B] = split(this.index, this.values);
const [C, D] = splitAt(B, newline);
if (D !== nil) {
// after the newline
const [E, F] = splitAt(D.tl, newline);
if (F == nil) {
this.values = concat(A, concat(C, cons(newline, nil)));

} else {
// drop one newline
this.values = concat(A, concat(C, F));
this.numNewLines = this.numNewlines - 1;

}
}


