
CSE 331: Software Design & Engineering Fall 2023

Midterm: Example

Name:

UW Email: @uw.edu

This exam contains 10 pages (including this cover page) and 4 problems. Check to see if any
pages are missing. Enter all requested information on the top of this page.

Instructions:

• Closed book, closed notes, no cell phones, no calculators.

• You have 50 minutes to complete the exam.

• Answer all problems on the exam paper.

• If you need extra space use the back of a page.

• Problems are not of equal difficulty; if you get stuck on a problem, move on.

• It may be to your advantage to read all the problems before beginning the exam.

• The final page, which contains reference material, can be removed but must be turned in
with your exam.

Problem Points Score

1 20

2 30

3 18

4 12

Total: 80

1

1. (20 points) Straight Off the At

The function at(n, S), returning the element at index n in the list S, is defined as follows:

func at(n, nil) := undefined for any n : N
at(0, cons(x, L)) := x for any x : Z and L : List

at(n+ 1, cons(x, L)) := at(n, L) for any n : N, x : Z and L : List

The function echo(S), returning a list with each element is repeated twice, is defined as:

func echo(nil) := nil

echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : Z and L : List

The following two properties of the “at” function will be useful to us:

• Fact A: at(2m, echo(S)) = at(m,S) for any m : N and S : List.

• Fact B: at(2m+ 1, echo(S)) = at(m,S) for any m : N and S : List.

In this problem, we will prove Fact A. Do so by induction on S.

Hint: since the definition of “at” has a separate cases for m = 0 and m = n + 1, you may
need to separate your induction step into those case as well.

(More space on the next page. . .)

2

3

The last three problems involve the following ADT:

/** A cursor is a list of integers. */

export interface IntCursor {

/** @returns obj */

values: () => List<number>;

/** @returns at(n, obj) */

valueAt: (n: number) => number | undefined;

}

This ADT will be implemented in the following class, which represents the result of applying
echo to a list of integers without actually computing echo (until the caller wants the full list).

class EchoCursor implements IntCursor {

// AF: obj = echo(this.vals)

readonly vals: List<number>; // list before echo-ing

constructor(vals: List<number>) {

this.vals = vals;

}

// ... methods implemented later ...

}

The class will have the following factory function:

/** @returns a cursor representing the list echo(vals) */

export const makeEchoCursor = (vals: List<number>): IntCursor => {

return new EchoCursor(vals);

};

4

2. (30 points) Rally the Loops

Consider the following code, which claims to implement the values method of EchoCursor.
(Note that, while you could calculate echo(this.vals) using our “bottom up” template, that
is not how this one does it, so we will need to double check it works.)

values = (): List<number> => {
let R: List<number> = this.vals;

let S: List<number> = nil;

{{ }}
{{ Inv: echo(this.vals) = concat(rev(S), echo(R)) }}
while (R !== nil) {
{{ }}
S = cons(R.hd, cons(R.hd, S));

{{ }}
R = R.tl;

}
{{ echo(this.vals) = rev(S) }}
return rev(S);

};

(a) Use reasoning to fill in the blank assertions above. You must reason forward through
the code before the loop and backward through the code in the body of the loop.

(b) In this part, we will complete the code review by proving the necessary implications:
one before the loop, one after exiting the loop, and one at the top of the loop body.

You must prove each of the necessary facts by calculation. However, to make things
easier, we will allow you to use a special rule to shorten a calculation as follows:

echo(this.vals)

= concat(rev(S), echo(R)) Because I said so

You can use the “Because I said so” rule one time in part (b). Alternatively, if you do
all the calculations, we will throw out the calculation with the lowest score.

(Continued on the next page. . .)

5

i. Prove that the first assertion you filled in implies that Inv holds initially.

(The definition of concat is included on the final page of the exam.)

ii. Prove that Inv and the fact that R = nil imply that the postcondition holds.
You should use the following fact in your calculation:

• Lemma 2: concat(L, nil) = L for any list L

(Continued on the next page. . .)

6

iii. Prove that Inv and the fact that R 6= nil imply that the assertion you filled in at the top
of the body of the loop holds. You should use the following facts in your calculation:

• Lemma 3: rev(rev(L)) = L for any list L

• Lemma 4: concat(concat(L,R), S) = concat(L, concat(R, S)) for any lists L,R, S.

7

3. (18 points) The Next Test Thing

Fill in the body of the following unit test for the values method from Problem 2. Include
comments explaining the test cases, as we did in the coding homework problems.

it(’values’, function() {
//

assert.deepStrictEqual(

makeEchoCursor().values(),

);

//

assert.deepStrictEqual(

makeEchoCursor().values(),

);

//

assert.deepStrictEqual(

makeEchoCursor().values(),

);

//

assert.deepStrictEqual(

makeEchoCursor().values(),

);

//

assert.deepStrictEqual(

makeEchoCursor().values(),

);

}

8

4. (12 points) I Smell An At

In this problem, you will implement the “valueAt” method of EchoCursor.

// @returns at(n, obj)

valueAt = (n: number): number => {

};

(a) Fill in the body of the method so that it satisfies the spec.

Your code may not call any functions other than “at” from Problem 1 (which you
can assume has been translated to TypeScript) and the built-in Math functions.

(b) Explain, in English, why your implementation is correct.

To get full credit, your explanation must reference the abstraction function (since
the spec is in terms of the abstract state, obj) and the two facts noted in Problem 1.

9

Familiar List Functions

The function len(L) returns the length of the list L:

func len(nil) := 0

len(cons(x, L)) := len(L) + 1 for any x : Z and L : List

The function rev(L) returns a list containing the values of L in reverse order:

func rev(nil) := nil

rev(cons(x, L)) := concat(rev(L), cons(x, nil)) for any x : Z and L : List

The function concat(S,R) returns a list containing the values of S followed by those of R:

func concat(nil, R) := R for any R : List

concat(cons(x, L), R) := cons(x, concat(L,R)) for any x : Z and L,R : List

10

