CSE 331
Software Design & Implementation

Autumn 2023
Section 6 — Imperative Programming |

Administrivia

« HWG released later today
— Due Wednesday (11/8) @ 11:00pm

Hoare Triples — Review

« A Hoare Triple has 2 assertions and some code

{PH
S

{Q}}
— P is a precondition, Q is the postcondition
— Sis the code

« Triple is “valid” if the code is correct:
— S takes any state satisfying P into a state satisfying Q

 Does not matter what the code does if P does not hold
initially

Stronger vs Weaker — Review

« Assertion is stronger iff it holds in a subset of states
— Stronger assertion implies the weaker one:
If Q, is true, Q, must also be true, Q, » Q;,

» Different from strength in specifications:
— A stronger spec:
» Stronger postcondition: guarantees more specific output
« Weaker precondition: handles more allowable inputs
compared to a weaker one

Forward Reasoning — Review

» Forwards reasoning fills in the postcondition
— Gives strongest postcondition making the triple valid
* Apply forward reasoning to fill in R

{P}}

ey

— Check second triple by proving that R implies Q

Question 1a

{z =3}

y =X - 2;

U

z =2 % y;

U

zZ =2z - 2;

U

{z>0}

i
i
i

Question 1b

{r <3}

y = x + 4;

U

X = 2 % X3

U

y =¥+

U

{y <14}

b

b

b

Backward Reasoning — Review

« Backwards reasoning fills in preconditions
— Just use substitution!
— Gives weakest precondition making the triple valid

* Apply backwards reasoning to fill in R

(P}]1
(R}

[S 2
{{Q}}

— Check first triple by proving that P implies R

 Good example problems in section worksheet!

Conditionals — Review

« Reason through “then” and “else” branches independently
* Prove that each implies post condition

const g = (n: number): number =>

{}} {}}

let m; let m;

if (n >= 0) { if (n >= 0) {
m= 2*n + 1; m = 2*n + 1;

} else { } else {
m = 0; m = 0;

& } }
{{m>n}) * {m>n}

return m; return m;

Question 3b

» Fill in the assertions for the “then” and “else” branches. Then
complete two arguments showing that each postcondition implies

{{s = 1}}
{s#tandt >0}
if (s >= t) {
s =8/ t;
} else {

s =t - s8;

}
| Us=>1}

Question 3b — “then” branch

{s#tandt >0}
L__i? (s >=t) {
{ b

s =8/ t;

{ b

} else {

s =t - s;

i b
| {s=>1}

Question 3b — “else” branch

{s#tandt >0}
if (s >= t) {

s =8/ t;
} else {

i

s =t - s;

U

i

H{s>1}

b

b
b

Loop Invariant — Review

{{Inv: I}}
while (cond) {
<)

< true!

true!

true!

}

< true!

* Loop invariant must be true every time at the top of the loop

— The first time (before any iterations) and for the beginning of
each iteration

« Also true every time at the bottom of the loop
— Meaning it's true immediately after the loop exits
« During the body of the loop (during S), it isn’t true

« Must use “Inv” notation to indicate that it's not a standard
assertion

Well-Known Facts About Lists

» Feel free to cite these in your proofs! They're easily proven by
structural induction (and you don’t have to do that again)

« Lemma 2: concat(L, nil) = L for any list L
« Lemma 3: rev(rev(L)) = L for any list L

« Lemma 4: concat(concat(L, R), S)
= concat(L, concat(R, S)) forany lists L, R, S

Question 4

Prove that the following code correctly calculates sum — abs(L)

(a) Invariant is true let s: number = 0;
ot op of loop fhe {{ Inv: s+ sum-abs(L) = sum-abs(Lg) }}
first time
while (L !'== nil) {
if (L.hd < 0) {
s = s + -L.hd;

(c) Invariant is } else {

E(r)eds;/erved by loop s =s + L.hd;
}
L = L.tl;

}
(b) Postcondition
holds when we exit | {{ s = sum-abs(Lo) }}

Question 4a

Prove that the invariant is true at top of loop the first time
— let s: number = 0;
(a) { Inv: s+ sum-abs(L) = sum-abs(Ly) }}
~ while (L !== nil) {
if (L.hd < 0) {
s = s + -L.hd;
} else {
s = s + L.hd;

}
L =L.tl;
}
{{ s = sum-abs(Lg) }}

Question 4b

Prove that, when we exit the loop, the postcondition holds
let s: number = 0;
{ Inv: s+ sum-abs(L) = sum-abs(Ly) }}
while (L !== nil) {
if (L.hd < 0) {
s = s + -L.hd;
} else {
s = s + L.hd;
}
L =L.tl;
}

(b) {{ s = sum-abs(Lg) }}

Question 4c

Prove that the invariant is preserved by the body of the loop

if (L.hd < 0) {
s = s + -L.hd;

} else {
s = s + L.hd;
}
{ 3}
L =L.tl;
A 1}

Question 4c

Prove that the invariant is preserved by the body of the loop

Then, forward reasoning through the “then” branch

{{ b
if (L.hd < 0) {
{{ B
s = s + -L.hd;
{{ B
} else {
{{ B
s = s + L.hd;
{ B
}
{{ b
L =L.tl;
{{ s

Question 4c

« Then, forward reasoning through the “else” branch

{ s
if (L.hd < 0) {
{{ 1
s = s + -L.hd;
{{ 1
} else {
{{ B
s = s + L.hd;
{{ 1
}
{ s
L =L.tl;
{ 3

Question 4c

Then check that the "then” branch implies the post condition:

Question 4c

Then check that the "else” branch implies the post condition:

Question 6

(a) Give the invariant for the loop, based on the "bottom-up”
template for lists

(b) How do we initialize the variables so the invariant is true
initially?

Question 6

(c) When do we exit the loop? What should the condition of the
while be?

(d) Generally, the template says we move down the list with L = L.tl.
swap processes 2 elements of the list at at time, so our loop
should do the same. Write the loop body that does this and
maintains the invariant:

