
CSE 331
Software Design & Implementation

Autumn 2023
Section 6 – Imperative Programming I

Administrivia

• HW6 released later today
– Due Wednesday (11/8) @ 11:00pm

Hoare Triples – Review
• A Hoare Triple has 2 assertions and some code

{{ P }}
 S
{{ Q }}

– P is a precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

• Does not matter what the code does if P does not hold
initially

Stronger vs Weaker – Review
• Assertion is stronger iff it holds in a subset of states

– Stronger assertion implies the weaker one:
 If Q2 is true, Q1 must also be true, Q2 → Q1

• Different from strength in specifications:
– A stronger spec:

• Stronger postcondition: guarantees more specific output
• Weaker precondition: handles more allowable inputs

 compared to a weaker one

Forward Reasoning – Review
• Forwards reasoning fills in the postcondition

– Gives strongest postcondition making the triple valid
• Apply forward reasoning to fill in R

– Check second triple by proving that R implies Q

Question 1a

Question 1b

Backward Reasoning – Review
• Backwards reasoning fills in preconditions

– Just use substitution!
– Gives weakest precondition making the triple valid

• Apply backwards reasoning to fill in R

– Check first triple by proving that P implies R

• Good example problems in section worksheet!

Conditionals – Review
• Reason through “then” and “else” branches independently
• Prove that each implies post condition

Question 3b
• Fill in the assertions for the “then” and “else” branches. Then

complete two arguments showing that each postcondition implies
{{𝑠 ≥ 1}}

Question 3b – “then” branch

Question 3b – “else” branch

Loop Invariant – Review

• Loop invariant must be true every time at the top of the loop
– The first time (before any iterations) and for the beginning of

each iteration
• Also true every time at the bottom of the loop

– Meaning it’s true immediately after the loop exits
• During the body of the loop (during S), it isn’t true

• Must use “Inv” notation to indicate that it’s not a standard
assertion

true!{{Inv: I}}
while (cond) {
 S
}

true!
true!

true!

Well-Known Facts About Lists
• Feel free to cite these in your proofs! They’re easily proven by

structural induction (and you don’t have to do that again)

• Lemma 2: concat(𝑳, nil) = 𝑳 for any list 𝑳

• Lemma 3: rev(rev(𝑳)) = 𝑳 for any list 𝑳

• Lemma 4: concat(concat(𝑳, 𝑹), 𝑺)
 = concat(𝑳, concat(𝑹, 𝑺)) for any lists 𝑳, 𝑹, 𝑺

Question 4
Prove that the following code correctly calculates sum − abs(𝐿)

(a) Invariant is true
at top of loop the
first time

(c) Invariant is
preserved by loop
body

(b) Postcondition
holds when we exit

Question 4a
Prove that the invariant is true at top of loop the first time

(a)

Question 4b
Prove that, when we exit the loop, the postcondition holds

(b)

Question 4c
Prove that the invariant is preserved by the body of the loop

(c)

Question 4c
Prove that the invariant is preserved by the body of the loop
• Then, forward reasoning through the “then” branch

Question 4c
• Then, forward reasoning through the “else” branch

Question 4c
Then check that the ”then” branch implies the post condition:

Question 4c
Then check that the ”else” branch implies the post condition:

(a) Give the invariant for the loop, based on the ”bottom-up”
template for lists

(b) How do we initialize the variables so the invariant is true
initially?

Question 6

(c) When do we exit the loop? What should the condition of the
 while be?

(d) Generally, the template says we move down the list with L = L.tl.
 swap processes 2 elements of the list at at time, so our loop
 should do the same. Write the loop body that does this and
 maintains the invariant:

Question 6

