
CSE 331: Software Design & Implementation
Section 6

1. It’s Forward Against Mine
In this problem, we will practice using forward reasoning to check the correctness of assignments. Assume that
all variables represent integers.

(a) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following code.
Then prove that the stated postcondition holds.

{{x ≥ 3 }}
y = x - 2;

{{________________________ }}
z = 2 * y;

{{________________________ }}
z = z - 2;

{{________________________ }}
{{ z ≥ 0 }}

(b) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following code.
Then prove that the stated postcondition holds.

{{x < 3 }}
y = x + 4;

{{________________________ }}
x = 2 * x;

{{________________________ }}
y = y + x;

{{________________________ }}
{{ y < 14 }}
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2. Not For a Back of Trying
In this problem, we will practice using backward reasoning to check the correctness of assignments. Assume
that all variables represent integers.

(a) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following code.
Then prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but simpler, way).
However, the assertions you write must be equivalent to still be weakest preconditions.

{{x < w + 1 }}
{{________________________ }}
y = 3 * w;

{{________________________ }}
x = x * 3;

{{________________________ }}
z = x - 6;

{{ z < y }}

(b) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following code.
Then prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but simpler, way).
However, the assertions you write must be equivalent to still be weakest preconditions.

{{x > 1 }}
{{________________________ }}
y = x - 4;

{{________________________ }}
z = 3 * y;

{{________________________ }}
z = z + 6;

{{ z ≥ y }}

2



3. Nothing to Be If-ed At
In this problem, we will practice using forward reasoning to check correctness of if statements. Assume that
all variables represent integers.

(a) Use forward reasoning to fill in the assertions, with the “then” branch on the left and the “else” branch
on the right. Then, complete two arguments showing that the two postconditions each imply {{y ≥ 2}}.

Assume that x and y are both integers.

{{x ≥ 0 }}
if (x >= 6) {

{{___________________________ }}
y = 2*x - 10;

{{___________________________ }}
} else {

{{___________________________ }}
y = 20 - 3*x;

{{___________________________ }}
}

{{___________________________ }} {{___________________________}}
{{ y ≥ 2 }}

(b) Use forward reasoning to fill in the assertions, with the “then” branch on the left and the “else” branch
on the right. Then, complete two arguments showing that the two postconditions each imply {{s ≥ 1}}.

Assume that s and t are both integers.

{{ s 6= t and t > 0 }}
if (s >= t) {

{{___________________________ }}
s = s / t;

{{___________________________ }}
} else {

{{___________________________ }}
s = t - s;

{{___________________________ }}
}

{{___________________________ }} {{___________________________}}
{{ s ≥ 1 }}
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4. Chicken Noodle Loop
The function sum-abs calculates the sum of the absolute values of the numbers in a list. We can give it a formal
definition as follows:

func sum-abs(nil) := 0

sum-abs(cons(x, L)) := −x+ sum-abs(L) if x < 0 for any x : Z and L : List
sum-abs(cons(x, L)) := x+ sum-abs(L) if x ≥ 0 for any x : Z and L : List

In this problem, we will prove that the following code correctly calculates sum-abs(L). The invariant for
the loop is already provided. It references L0, which is the initial value of L when the function starts.

let s: number = 0;

{{ Inv: s+ sum-abs(L) = sum-abs(L0) }}
while (L !== nil) {

if (L.hd < 0) {

s = s + -L.hd;

} else {

s = s + L.hd;

}

L = L.tl;

}

{{ s = sum-abs(L0) }}

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

(c) Prove that the invariant is preserved by the body of the loop. To do this, use backward reasoning to
reason through the last assignment statement “L = L.tl;”. Then, use forward reasoning for each branch
of the “if” statement (as in Problem 3). Finally, complete the correctness check by verifying that each of
the assertions you produced with forward reasoning implies the assertion produced by backward reasoning
immediately above the last assignment statement.

We have previously used the fact that, when L 6= nil, we know that L = cons(x,R) for some x : Z
and R : List. However, in the code, we know exactly what x and R are, namely, x = L.hd and R = L.tl.
Hence, when L 6= nil, we actually have L = cons(L.hd, L.tl). Feel free to use that in your proof.
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5. The Only Game in Down
The function “countdown” takes an integer argument “n” and returns a list containing the numbers n, . . . , 1.
It can be defined recursively as follows:

func countdown(0) := nil
countdown(n+ 1) := cons(n+ 1, countdown(n)) for any n : N

This function is defined recursively on a natural number so it fits the natural number template from lecture.

(a) Using the template described in lecture, give the invariant for a loop implementation of this function.
Assume that the variable counting up to n is called “i” and the partial-result is stored in a variable

called “L” (rather than “s”).

(b) How do we initialize i and L so that the invariant is true initially?

(c) When do we exit the loop calculating “countdown(n)”? What should the condition of the while be?

(d) What code do we write in the body of loop so that the invariant remains true when i is increased by one?
Be careful! It’s easy to make a mistake here.
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6. Take It From the Swap
Recall the function “swap”, which swaps adjacent elements in a list:

func swap(nil) := nil
swap(cons(a, nil)) := undefined for any a : Z
swap(cons(a, cons(b, L))) := cons(b, cons(a, swap(L))) for any a, b : Z and L : List

This function is defined recursively on a list argument so we can use the “bottom up” template for lists.
Note that this function requires the list to always have an even number of elements. Thus, the middle case

in the above definition will not occur (it is included only to maintain exhaustive pattern matching).

(a) Using the template described in lecture, give the invariant for a loop implementation of this function.
As in the template, assume that we have a variable “R” that stores the part of the input list L that we

have not yet processed in reverse order, a variable “S” that stores the part of L that we have processed
already, and a variable “T” that stores our calculation of swap(S).

Your loop should differ from the basic template, however, by processing two elements each time
through the loop! That is, after all, how the recursive version of swap works above. Note that this does
not require any changes to the invariant, initialization, or exit condition. Only the loop body differs.

(b) How do we initialize the variables so that the invariant is true initially?

(c) When do we exit the loop? What should the condition of the while be?

(d) The template tells us to move down the list by setting L = L.tl. However, swap makes its recursive call
on a list that is shorter by two elements, so our loop body should try to move forward by two elements.

What code do we write so that the list gets shorter by two elements and the invariant remains true?
Be careful! There are lots of ways to make mistakes here.
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