
CSE 331
Software Design & Implementation

Autumn 2023
Section 5 – Functional Programming III

Administrivia

• HW5 released later today
– Due Wednesday (11/1) @ 11:00pm
– Remember to check that the autograder passes! Helps make

sure you turned in the right files, pass the linter, etc.

• Can resubmit as many times as you’d like until the deadline.
– Use the autograder as a tool if you’re not sure if your

code/tests have bugs

Abstraction Barrier – Review

• Specifications acts as the “barrier” between each side
– improves understandability, changeability, and modularity

• Clients can only depend on the spec

• Implementer can write any code that satisfies the spec

Specifications for ADTs – Review
• New Terminology for specifying ADTs:

– Concrete State / Representation (Code)
• Actual fields of the record and the data stored
• Ex: { list: List, last: number | undefined }

– Abstract State / Representation (Math)
• How clients should understand the object
• Ex: List (nil or cons)

Specifications for ADTs – Review

• Talk about functions in terms of the abstract state

• Hide the representation details (i.e. real fields) from the client

obj is the abstract state

Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field
values represent

– Maps field values à the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

Documenting ADTs – Review

Prove correctness of last(obj) 	= 	this. last	 using both

Last(obj) 	= 	last(this. list) by AF
	 	= 	this. last by RI

Defining Interfaces

Typescript

Java

Readonly – Typescript

• The prefix readonly is used to make a property read-only
– Value cannot be changed
– Protects variables from unwanted mutations
– Should be our default

Ex:
 class FastLastListImpl implements FastList {
 readonly last: number | undefined;
 readonly list: List<number>;
 }

Abstract Data Class – Example
class FastLastListImpl implements FastList {
 readonly last: number | undefined;
 readonly list: List<number>;

 constructor(list: List<number>) {
 this.last = last(list);
 this.list = list;
 }

 getLast = () => { return this.last; }
 toList = () => { return this.list; }
}

Can create new record using “new”:

 new FastLastListImpl(list);

Question 1 & 2 – Coding
Run npm run start in sec-highlight to check it out!

input the points:
100 100
100 300
300 100
300 300

Questions 1 & 2 – Recap
• From concrete implementation à ADT, writing specs shouldn’t

be too hard
– the specs already exist
– just need to adjust what objects they’re operating on:

parameters à ‘obj’
– and add appropriate AF and RI

• Only did 1 in this example, but we’re able to have multiple
classes implement the same interface, all with the same spec
– Implementation can be switched out as needed, but expected

inputs and behavior (spec) will be consistent

Question 4

Hints:

1) Define the tree in your IH according to the definition of tree
`node(x, S, T)` so you can access the left and right trees

2) Remember the exponent rule: 𝑥!	×	𝑥 = 𝑥!"#

Prove by structural induction that, for any left-leaning tree
𝑇, we have:

Question 3 – Preface

Note: in the recursive case, you:
• make a call to 𝐬𝐞𝐩 𝑳, 𝒙
• take the return value of that call 𝑨,𝑩
• 𝐜𝐨𝐧𝐬(𝒚 on to 𝐴 or 𝐵 and returns (𝐴, cons(𝑦, 𝐵)) or (𝑐𝑜𝑛𝑠(𝑦, 𝐴), 𝐵)

• Making an additional step to make our recursive result cleaner
and avoid multiple recursive calls

sep takes a list 𝐿 and a value 𝑥, and returns two lists, 𝐴
containing all values ≤ 𝑥	and 𝐵 containing all values > 𝑥.

