
CSE 331
Software Design & Implementation

Autumn 2023
Section 4 – Functional Programming II

Administrivia

• HW4 released later today
– Due Wednesday (10/25) @ 11:00pm

• Remember to check the autograder to make sure you pass your
own tests! You won’t lose autograder points, but they should
pass!

• Remember to look at your feedback, you may not have lost
points on a question but still have helpful comments

Structural Induction – Review
• Let P(S) be the claim
• To Prove P(S) holds for any list S, we need to prove two

implications: base case and inductive case

– Base Case: prove P(nil)
• Use any know facts and definitions

– Inductive Hypothesis: assume P(L) is true for a L: List
• Use this in the inductive step ONLY ⤵

– Inductive Step: prove P(cons(x, L)) for any x : Z, L : List
• Direct proof
• Use know facts and definitions and Inductive Hypothesis

• Assuming we know P(S), if we prove P(cons(x, L)), we then
prove recursively that P(S) holds for any List

Defining Function By Cases – Review
• Sometimes we want to define functions by cases

– Ex: define 𝑓(n) where n ∶ 	ℤ	

– To use the definition 𝑓(m), we need to know if m	 > 	0	or not
– This new code structure requires a new proof structure

Proof By Cases – Review
• Split a proof into cases:

– Ex: a	 = 	True and a	 = 	False or n	 >= 	0	 and n	 < 	0
– These cases needs to be exhaustive

• Ex:

Since these 2
cases are
exhaustive,
𝑓 n >= 	n	

holds in general

Case 𝐧 ≥ 𝟎:
 𝑓 n = 2n + 1					def of 𝑓	(since 𝑛	 ≥ 0)
 > n since 𝑛	 ≥ 0

Case 𝐧 < 𝟎:
 𝑓 n = 	0	 def of 𝑓	(since 𝑛 < 	0)
 ≥ n since 𝑛 < 	0

Question 1
pseudo-sort: takes a list of numbers as an argument, “looks at the
first two numbers in the list, orders the pair to place the smaller of
the two in the front, and then continues through the following pairs in
the list after the first element“

(a) Write a formal definition using recursion

(b) Show by example that pseudo-sort does not actually sort the list

5 1 4 2 1 5 4 2

5 > 1, switch Now compare 5 & 4 and so on…

Question 2

Prove this code is correct by showing that sum(twice(S)) = 2 sum(S)
holds for any list S by structural induction.

Question 4

Prove by cases that swap(cons(a, L)) ≠ nil for any integer a : ℤ and list L.

Question 3
sum(twice-evens(L)) + sum(twice-odds(L)) = 3 sum(L)

Prove that this holds for any list 𝑆 by structural induction.

