CSE 331
Software Design & Implementation

Autumn 2023
Section 3 — Functional Programming |

UW CSE 331 Autumn 2023

Administrivia

« HWa3 released later tonight, due next Wednesday at 11pm

— Will be more difficult than HW1 and HW2. + has more
weight in the gradebook

— Please! start early and be prepared for a challenge!
— Give yourself time to come to OH and ask questions on Ed

— Working on the same issue for hours when you're stuck won'’t
help, ask for help!

Review — Inductive Data Types

« Describe a set by ways of creating an element of the type
— Each is a “constructor”
— Second constructor is recursive
— Can have any number of parameters

EX: base case recursive case

N\ /

type List := nil | cons(x:Z, L: List)

nil 11-{2]3
cons(3, nil)

cons(2, cons(3, nil))
cons(1, cons(2, cons(3, nil)))

Review — Structural Recursion

* Inductive types: builds new values from existing ones
« Structural recursion: recurse on smaller parts

— Callon nrecursesonn.val

— Guarantees no infinite loops

— Note: only kind of recursion used for this class

Ex: type List:= nil | cons(hd: Z, tl: List)
func len(nil) =0
len(cons(x,L)) := 1+len(L) forany x € Z
and any L € List

— Any List is either nil or of the form cons(x, L) for some number
x and List L

— Cases of function are exclusive and exhaustive based on &

Testing

describe(‘example’, function() {
it(‘testBar’ function() {
/* assert statements */

})
})

« Use assertions to compare expected and actual output for each
test case

- assert.deepStrictEqual (expected, actual);
should be used generally

» Keep your tests simple! Don’t want to have to write tests for your
tests

Testing — Strict vs Deep

Assertion Failure Condition

assert.strictEqual(expected, actual) expected I== actual

asser‘t.deepStr‘ictEqual(expected, actual) Values/types Of Chlld ObJeCtS are not equal

const vl: Vector = {x: 1, y: 1}; two different objects,
const v2: Vector = {x: 1, y: 1}; but same record values

it('assert_strict', function() {
assert.strictEqual(vl, v2); < this will fail
i

it('assert_deep_strict', function() {
assert.deepStrictEqual(vl, v2); < this will pass
1)

Testing — Documenting

« Document which subdomain you are testing. A justification:
heuristic used, part of code it tests.

Name of class being tested
Ex: /

describe(‘example’, function() {

/ Name of test (can be function being tested)

it(‘testBar’ function() {

/* comment describing subdomain being tested x*/
assert...

1)
})

Definitions

type List := nil

cons(hd : Z, tl : List)

* Len —returns the length of a list:

func len(nil)
len(cons(a, L))

0
1+ len(L)

forany a: Z and L : List

« Sum — returns the sum of the integers in the list:

func sum(nil)
sum(cons(a, L))

0
a + sum(L)

for any a : Z and L : List

Question 1

twice takes a list and returns a list of the same length but
with every number in the list multiplied by 2

Show the result of applying twice to each list:

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(c, nil)))

Question 1

(b) The previous list of examples is not a formal definition. It does not tell
us, for example, what twice does to a list of length 4. More generally, any
time we see “...", the definition is probably not formal.

Write a formal definition of twice using recursion.

Question 1

func twice(nil) = nil
twice(cons(a, L)) := cons(2a,twice(L)) forany a:Z and L : List

(c) If we translated this into TypeScript code in the most direct manner (level
0), what heuristic should we use to get a set of subdomains? What specific
tests should we use to make sure that everything is correct?

Question 2

if (equal(L, cons(1l, cons(2, nil)))) {
const R = cons(2, cons(4, nil)); // = twice(L)
return cons(0, R); // = twice(cons(0, L))

}

Comments // are the spec, but the code isn’t a direct
translation of the spec (level 1)

Need to prove it does the same thing as the spec

Question 2

(a) Using the fact that L = cons(1, cons(2,nil)), prove by calculation that
twice(L) = R, where R is the constant list defined in the code. l.e., prove
that

twice(L) = cons(2, cons(4, nil))

func twice(nil) = nil
twice(cons(a, L)) := cons(2a,twice(L)) for any a:Z and L : List

Question 2

func twice(nil) = nil

twice(cons(a, L)) := cons(2a,twice(L)) for any a:Z and L : List

(@) twice(L) = cons(2, cons(4, nil))

(b) Using the facts that L = cons(1, cons(2, nil)) and R = cons(2, cons(4, nil)),
prove by calculation that the code above returns the correct value, i.e.,
prove that

twice(cons(0, L)) = cons(0, R)

Feel free to cite part (a) in your calculation.

Question 3

twice-evens takes a list and returns a list of the same
length but with every other number (at even indices) in
the list multiplied by 2

Show the result of applying twice-evens to each list:

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(c, nil)))

Question 3

(b) The previous list of examples is not a formal definition (because of the
ll- . ")'

Write a formal definition of this function, twice-evens, using recursion.
In order to do so, you may need to define more than one function!

Question 3

(c) If we translated this into TypeScript code in the most direct manner (level
0), what tests (if any) should we include to make sure that everything is
correct?

Question 4

func twice-evens(nil) = nil

twice-evens(cons(a, L)) := cons(2a,twice-odds(L)) for any a:Z and L : List
func twice-odds(nil) = nil

twice-odds(cons(a, L)) := cons(a,twice-evens(L)) for any a:Z and L : List
func len(nil) = i)

len(cons(a, L)) := 1+ len(L) foranya:Z and L : List

(a) Let a and b be any integers. Prove by calculation that
len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

Question 4

Given this code:

return 2 + len(twice _evens(L)); // = len(twice-evens(cons(3, cons(4, L))))

And the fact we proved in (a):

len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

(b) Explain why the direct proof from part (a) shows that the code is correct
according to the specification (written in the comment).

HW3 Reminders/Recommendations:

No mutation! Make a new variable for new values you calculate

» Proofs by calculation require explanations/rules for every line
(except basic algebra, you can say “math” if you want)

* Proofs by calculation can start with the left or right side of the =to
prove

 We won'’t penalize you for more test cases than the minimum
required!

» |If you get errors that “property does not exist on

type " it probably means you are missing a nil check

Proof by calculation LaTeX

Optional, if you're using LaTeX feel free to use this to align proofs:

$$\begin{aligned}
& first line of proof && \'\
&\qquad = line of proof && \text{rule} \\
&\qquad = line of proof && \text{rule} \\
\end{aligned}$$

and to align functions:

$$\begin{aligned}

\textbf{func } & \textsf{funcName} (case)
&&:= result &\text{side cond} \\

& \textsf{funcName} (case)
&&:= result &\text{side cond} \\

\end{aligned}$$

