
UW CSE 331 Autumn 2023

CSE 331
Software Design & Implementation

Autumn 2023
Section 3 – Functional Programming I

Administrivia

• HW3 released later tonight, due next Wednesday at 11pm
– Will be more difficult than HW1 and HW2. + has more

weight in the gradebook
– Please! start early and be prepared for a challenge!
– Give yourself time to come to OH and ask questions on Ed
– Working on the same issue for hours when you’re stuck won’t

help, ask for help!

Review – Inductive Data Types
• Describe a set by ways of creating an element of the type

– Each is a “constructor”
– Second constructor is recursive
– Can have any number of parameters

Ex: base case recursive case

1 2 3

Review – Structural Recursion

• Inductive types: builds new values from existing ones
• Structural recursion: recurse on smaller parts

– Call on n recurses on n.val
– Guarantees no infinite loops
– Note: only kind of recursion used for this class

Ex:

– Any List is either nil or of the form cons(x, L) for some number
x and List L

– Cases of function are exclusive and exhaustive based on ⤴

Testing
describe(‘example’, function() {
 it(‘testBar’ function() {
 /* assert statements */
 })
})

• Use assertions to compare expected and actual output for each
test case
– assert.deepStrictEqual(expected, actual);

should be used generally

• Keep your tests simple! Don’t want to have to write tests for your
tests

Testing – Strict vs Deep
Assertion Failure Condition
assert.strictEqual(expected, actual) expected !== actual
assert.deepStrictEqual(expected, actual) values/types of child objects are not equal

this will fail

this will pass

two different objects,
but same record values

Testing – Documenting
• Document which subdomain you are testing. A justification:

heuristic used, part of code it tests.

Ex:
describe(‘example’, function() {

 it(‘testBar’ function() {

 /* comment describing subdomain being tested */
 assert...
 })
})

Name of class being tested

Name of test (can be function being tested)

Definitions

• Len – returns the length of a list:

• Sum – returns the sum of the integers in the list:

Question 1
twice takes a list and returns a list of the same length but
with every number in the list multiplied by 2

Show the result of applying twice to each list:

Question 1

Question 1

Question 2

Comments // are the spec, but the code isn’t a direct
translation of the spec (level 1)

Need to prove it does the same thing as the spec

Question 2

(a)

Question 2

Question 3
twice-evens takes a list and returns a list of the same
length but with every other number (at even indices) in
the list multiplied by 2

Show the result of applying twice-evens to each list:

Question 3

Question 3

Question 4

Question 4
Given this code:

And the fact we proved in (a):

HW3 Reminders/Recommendations:

• No mutation! Make a new variable for new values you calculate

• Proofs by calculation require explanations/rules for every line
(except basic algebra, you can say “math” if you want)

• Proofs by calculation can start with the left or right side of the = to
prove

• We won’t penalize you for more test cases than the minimum
required!

• If you get errors that “property ___ does not exist on
type ___" it probably means you are missing a nil check

Proof by calculation LaTeX
• Optional, if you’re using LaTeX feel free to use this to align proofs:

$$\begin{aligned}
 & first line of proof && \\
 &\qquad = line of proof && \text{rule} \\
 &\qquad = line of proof && \text{rule} \\
\end{aligned}$$

• and to align functions:

$$\begin{aligned}
 \textbf{func } & \textsf{funcName}(case)
 &&:= result &\text{side cond} \\
 & \textsf{funcName}(case)
 &&:= result &\text{side cond} \\
\end{aligned}$$

