
CSE 331: Software Design & Implementation
Section 3

The problems that follow make use of the following inductive type, representing lists of integers

type List := nil | cons(hd : Z, tl : List)

In lecture, we saw some standard functions on list. One was len, which returns the length of the list. It is
defined formally using recursion as follows:

func len(nil) := 0

len(cons(a, L)) := 1 + len(L) for any a : Z and L : List

In the next homework, we will also use the function sum, which returns the sum of the integers in the list:

func sum(nil) := 0

sum(cons(a, L)) := a+ sum(L) for any a : Z and L : List

1



1. Sugar and Spice and Everything Twice
We are asked to write a function “twice” that takes a list as an argument and “returns a list of the same length
but with every number in the list multiplied by 2“.

(a) This is an English definition of the problem, so our first step is to formalize it. Let’s start by writing this
out in more detail. Fill in the blanks showing the result of applying twice to lists of different lengths.

nil _______________

cons(a, nil) _______________

cons(a, cons(b, nil)) _______________

cons(a, cons(b, cons(c, nil))) _______________

. . .

(b) The previous list of examples is not a formal definition. It does not tell us, for example, what twice does
to a list of length 4. More generally, any time we see “. . . ”, the definition is probably not formal.

Write a formal definition of twice using recursion.

(c) If we translated this into TypeScript code in the most direct manner (level 0), what heuristic should we
use to get a set of subdomains? What specific tests should we use to make sure that everything is correct?

2



2. Twice Things Up
You see the following snippet in some TypeScript code. It uses cons and nil, which are TypeScript implemen-
tations of “cons” and “nil”, and also equal, which is a TypeScript implementation of “=” on lists.

if (equal(L, cons(1, cons(2, nil)))) {
const R = cons(2, cons(4, nil)); // = twice(L)
return cons(0, R); // = twice(cons(0, L))

}

The comments show the definition of what should be returned (the specification), but the code is not a direct
translation of those. Below, we will use reasoning to prove that the code is correct.

(a) Using the fact that L = cons(1, cons(2, nil)), prove by calculation that twice(L) = R, where R is the
constant list defined in the code. I.e., prove that

twice(L) = cons(2, cons(4, nil))

(b) Using the facts that L = cons(1, cons(2, nil)) and R = cons(2, cons(4, nil)), prove by calculation that the
code above returns the correct value, i.e., prove that

twice(cons(0, L)) = cons(0, R)

Feel free to cite part (a) in your calculation.

3



3. Miami Twice
We are asked to write a function that takes a list as an argument and “returns a list of the same length but
with every other number in the list, starting with the first number, multiplied by 2“.

The first number in the list is at index 0, which is even; the second number in the list is at index 1, which
is odd; the third number in the list is at index 2, which is even; and so on. Hence, we will call this function
twice-evens because it multiples the numbers at even indexes by two and leaves those at odd indexes unchanged.

(a) The definition of the problem was in English, so our first step is to formalize it. Let’s start by writing this
out in more detail. Fill in the blanks showing the result of applying twice-even to lists of different lengths.

nil _______________

cons(a, nil) _______________

cons(a, cons(b, nil)) _______________

cons(a, cons(b, cons(c, nil))) _______________

. . .

(b) The previous list of examples is not a formal definition (because of the “. . . ”).
Write a formal definition of this function, twice-evens, using recursion. In order to do so, you may

need to define more than one function!

(c) If we translated this into TypeScript code in the most direct manner (level 0), what tests (if any) should
we include to make sure that everything is correct?

4



4. It’s Raining Len
You see the following snippet in some TypeScript code. It uses twice_evens, which is a TypeScript implemen-
tation of twice-evens from the previous problem, as well as len from before.

return 2 + len(twice_evens(L)); // = len(twice-evens(cons(3, cons(4, L))))

The comment shows the definition of what should be returned (the specification), but the code is not a direct
translation of that. Below, we will use reasoning to prove that the code is correct.

(a) Let a and b be any integers. Prove by calculation that

len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

This form of argument is called a direct proof: a style of argument where we use variables to stand in for
values (a and b for integer values, in this case) and prove that the claim holds regardless of the actual
value of that variable. Once the proof is complete, we are allowed to substitute in any concrete values for
the variables and know that the resulting fact is true. It must be true because substituting those values
into the calculation would give us a proof for those specific values!

(b) Explain why the direct proof from part (a) shows that the code is correct according to the specification
(written in the comment).

5


