CSE 331
Software Design & Implementation

Fall 2023
Section 2 — HW2: Correctness, Specifications, & Testing

UW CSE 331 Fall 2023

Administrivia

« HWZ2 released tonight, due next Wednesday 11pm
— No more than one late day per assignment
— 4 |ate days in total

« Section solutions posted tonight & recording later on

Reminders:
» Check out ed guidelines on ed!

« Can attend any OH! Queue posted on ed, most in-person TAs will
just use whiteboard

Where are we?

v Basics of Typescript
v" Basics of the browser

« Math notation & specifications
« Correctness concepts
 Testing

Reasoning techniques (for levels 1-3)
Abstraction

App design / more complex React apps
+ more!

O O O O

Review — Correctness

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews
1 no mutation “ libraries calculation
induction
2 local variable “ “ Floyd logic
mutation
3 array / object “ “ rep invariants
mutation

« Test all possible cases if reasonable, then use heuristics to
approximate

« As code increases|(.y in complexity, formality and complexity of
reasoning technique must increase [too

 3is “worst case” for how difficult it is to be confident it’s correct

Question 1

(a) Consider the following mathematical function defined on
the integers 1, 2, 3, and 4:

func

|
s 0 N

(1) :
(2) :
(3) :
(4) :

~

If we implement this directly in TypeScript using a switch
statement, what level of correctness is required?

Question 1

(b) Consider the following mathematical function defined on
the inputs n and b, where n is 1, 2, 3, or 4 and b is true
or false. It is defined in terms of the function f defined in
part (a).

func g(n,T) := f(n)

g('n’? F) = f(n)

If we implement this in TypeScript using an if statement
(on b), what level of correctness is required?

Question 1

(c) Consider the following mathematical function defined on
the inputs n and x, where n is 1, 2, 3, or 4 and x is any
integer. It is defined in terms of the function f defined in
part (a).

func h(n,z) == f(n) + z

If we implement this in TypeScript using a single return
statement, what level of correctness is required?

Question 1

(d) Suppose that we implement the function A with the following TypeScript
code. It calls f, which we will assume is implemented in TypeScript with
one conditional.

const h = (n: number, x: number): number => {
let y = f(n);
while (x > 0) {
y=y+1;
> > Al -
}

return y;

}

What level of correctness is required now?

Question 2 — Set up

Clone the starter code:
git clone https://gitlab.cs.washington.edu/

cse331-23au-materials/sec-levels.git

Then run:
npm install --no-audit
In the sec-1evels directory

Try:
npm run test
to confirm that all the test fail at this point

Question 2 — Preface

* This question asks us to implement functions incorrectly

« Tests verify that some cases produce correct output, and that
particular cases produce incorrect output

« Completing the problem correctly = the tests pass = the function
IS incorrect

* Why this exercise?
— Tests give confidence that implementations are correct

— typos, misplacing boundaries, forgetting cases are realistic
mistakes to make

— With the wrong set of tests or not enough tests, mistakes can
go unnoticed, giving false confidence in correctness

— So, we use heuristics!!

Question 2

(a) Fill in the code for the function quadraticl and quadratic?2
in src/funcs.ts so that it passes the tests provided in
src/funcs_test.ts but is wrong (not correct on all in-

puts).

(b) Fill in the code for the function abs_value in src/funcs.ts
so that it passes the tests provided in funcs_test.ts but

IS wrong.

Your implementation must be a single “if" statement
(i.e., a conditional), with one branch returning “x" and the
other branch returning “-x". You can choose the branch

condition.

Run tests with: npm run test

Question 5a

(a) We included 4 tests for abs_value, two for each branch.
Why was that not enough to detect the problem? What
heuristic did we forget about?

Question 2

(c) If our code does pass all the tests required by our heuristics,
does that guarantee that it is correct?

Review — Math Notation

N all non-negative integers (“natural” numbers)
Z all integers

R all real numbers

B

S

S*

the boolean values (T and F)
Made up by any character
Kevin :) any sequence of characters (“strings”)

* Union: A U B set including everything in A and B
 Tuple: A X B all pairs (a,b) whereae€e Aandb € B

* Record: {x: A, y: B} all records with fields x, y of types
A, B

Review — Math Notation

- Pattern matching: defining function based on input cases
— Exactly one rule for every valid input
ex: func f(0) =0
f(n+1):=n foranyn: N
-2 “n+17 is signifying that the input must be > 0 since the
smallest value n: N would be 0

- Side conditions: limiting/specifying input in the right column,
cleans things up, pattern matching preferred

 See the course website > Calendar > 10/4 lecture notes: “Math
Notation” for more!

https://courses.cs.washington.edu/courses/cse331/23au/lectures/math-notation-abbv.pdf
https://courses.cs.washington.edu/courses/cse331/23au/lectures/math-notation-abbv.pdf

Question 3

func half(null) =0
half(undefined) :=0
half(n : N) =m/2 if n is even
half(n : N) =—(n+1)/2 if nisodd

(a) What is the type for the function half? (There are 2 possi-
bilities.) Use the notation half : A — B to indicate that half
takes inputs of type A and produces outputs of type B.

Question 3

half : (null | undefined | N) — Z or half : (null | undefined | N) — R.

(b) What would the declarations of this function look like in
TypeScript based on the type?

(c) Implement the mathematical function half as a Typescript
function in funcs.ts. Make sure it is exported.

Run tests with: npm run test

Question 4

const maybeDouble = (t: {b: boolean, v: [boolean, number]}): number => {
if (t.b) {
if (t.v[0]) {

return 2 * t.v[1];

} else A
return t.v[1];
} How would you translate this into
} else { our math notation using pattern
return O; .
} matching?

};

