
Math Notation
James Wilcox and Kevin Zatloukal

May 2023

It is important for us to have tools that we can use to reason about code outside the context of a specific
programming language. This article defines the mathematical tools that we will use for this purpose, starting
first with data (“types”) and then moving to code (“ functions”).

Data Types
Each data type defines a collection of allowed values. If “x” is a variable and “T” is a data type, then the
statement “x : T”, read “x has type T”, says that the value of x is something included in T .

In math terms, data types are “sets”. The most basic sets that we will use for data types are the following:

N all non-negative integers (“natural” numbers)
Z all integers
R all real numbers
B the boolean values (T and F)
S any character
S∗ any sequence of characters (“strings”)

Compound Types
We can construct new types from existing types A and B using the following operators:

• Union: A ∪B is the set that includes every value in either A or B (or both)

• Tuple: A×B is the set of all pairs of the form (a, b) with a : A and b : B

• Record: {x : A, y : B} is the set of all records containing fields called “x” and “y” of types A and B,
respectively

Both this tuple and record type represent values that include both a value of type A and a value of
B, together in one object. The only difference is that the record identifies to the two parts by giving them
names (x and y), whereas the parts of a tuple are identified by order. In the tuple (a, b) : A × B, it is the
first part “a” that has type A.

If f : {x : A, y : B} is a record, then we can refer to the part of type A as “f.x”. On the other hand,
if t : A × B, then we don’t have any immediate way to refer to the parts. To talk about them, we have to
define new variable names. Specifically, we can say “define (a, b) := t”, and then “a” refers to the A part of
t and “b” refers to the B part.1

Both tuples and records can have more than two components, if desired.
1The symbol “:=” indicates a definition, rather than an equation. In general, the equation “(a, b) = t” could be true or false,

depending on the values of these variables, whereas the definition “(a, b) := t” tells us that the previous equation certainly holds
because we are defining “a” and “b” to make it so.

1



Functions
Our basic notation for defining functions looks like this:

func double(n : N) := 2n

Here, the type restriction that n must be a natural number is included on the left-hand side. The right-hand
side can be any valid mathematical expression in the declared variables. In this case, for any natural number
n that is passed in, the function returns twice that number.

We are free to use any types that can be defined as described in the previous section. For example, the
following is a function that takes a point in the plane as a record and returns its distance from the origin.

func dist(p : {x : R, y : R}) := (p.x2 + p.y2)1/2

If we define a name for this record type, then we can shorten the function declaration as follows:

type Point := {x : R, y : R}
func dist(p : Point) := (p.x2 + p.y2)1/2

Pattern Matching
The functions above were very simple, calculating the return value using the same expression for all inputs.
To write more complex functions, we need to be able to break the inputs up into different cases and give
each their own return value expression.

Our primary way of splitting the inputs into cases will be via pattern matching. For each case, we
write a function definition where, rather than declaring an argument like “a : A” that could have any value
of type A, we have a set of cases and write a function definition for each with an expression that describes
the inputs that fall into that case.

As a simple example, consider the enum type B, and suppose that we want to define the function “not”
that flips the value between true and false. Rather than defining the function as “not(b : B) := . . . ”, we can
split the true and false cases using pattern matching as follows:

func not(T) := F
not(F) := T

Since every input is either T or F, exactly one of these rules applies. I.e., they are exclusive and exhaustive.
(We will leave off the type on a literal value when its type is clear, e.g., we write “T” not “T : B”.)

We can likewise use pattern matching on N. For example, instead of defining “double” as we did above,
we could instead define it like this:

func double(0) := 0

double(n+ 1) := double(n) + 2 for any n : N

(Here, there wasn’t a natural place in the expression “n+ 1” to indicate that n has type N, so I wrote that
on the right side, just to be safe. However, in this case, it was probably already clear that we must have
n : N in order for n+ 1 to have type N, so this was possibly unnecessary.)

It is important that exactly one rule applies for any valid input. Any natural number that is not 0
must be 1 or more, so it can be written as n+ 1 for some n : N. Those two cases are exclusive (0 does not
match n + 1) and exhaustive, so the previous example is a valid way to define the function. If we wanted,
we could instead split the inputs into cases 0, 1, and n + 2 (for any n : N) because those are also exclusive
and exhaustive.

We can use patterns with many other types as well. For example, suppose that we have the following
record type, which stores a real number and a boolean:

type R := {x : R, b : B}

2



In this case, we could split the inputs into cases based on just the value of the boolean field like this:

func f({x : R,T}) := x

f({x : R,F}) := −x

Exactly one pattern matches any record of type R, so our rules are exclusive and exhaustive as required.

Side Conditions
In some cases, it will be necessary to write side conditions that restrict when a given pattern is allowed to
match. For example, we could define the “not” example from before instead like this:

func not(b : B) := F if b = T
not(b : B) := T if b = F

As before, we must be careful to make sure that the conditions are exclusive and exhaustive.
In general, side conditions are harder to work with when reasoning. (Unlike pattern matching, they

require an explanation of why that side condition holds before the definition can be applied.) For that
reason, we always prefer pattern matching.

We will only use side conditions when pattern matching notation is inapplicable. As an example, if x : R
is an argument and we want to define our function differently based on whether x > 1, then we would need
a side condition because we do not have a pattern to describe real numbers greater than 1.

3


