
Equality
Kevin Zatloukal

CSE 331

Administrivia

• Section tomorrow is final exam practice
– will focus on problems not included in midterm

mutable ADTs and writing loops given invariant

• Will email some reading tonight
– problems reference an ADT definition
– time in section is too short to read and do problems

final exam is 1 hour and 50 minutes, so there will be time to read then

Equality

Equity of User-Defined Types

• For any type, useful to know which are “the same”

• TypeScript “===” is not useful on records:

{a: 1} === {a: 1} // false!

– as in Java, this is “reference equality”
– tells you if they refer to the same object in memory

• deepStrictEquals would work here
– checks that the records have the same fields and values
– but that also is not perfect…

Recall: Queue With Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<number>;
readonly back: List<number>;

– two ways of representing the same abstract state:

{front: cons(1, cons(2, nil)), back: nil} // = 1, 2
{front: nil, back: cons(2, cons(1, nil))} // = 1, 2

– these should be considered equal!

Equality

• Often useful / necessary to define your own equal
– check if references point to records that are “the same”

• Sensible definition should act like “=” in math:

1. equal(a,	a)	=	T for	any	a	:	A

2. equal(a,	b)	=	equal(b,	a)		for	any	a,	b	:	A

3. if	equal(a,	b)	and	equal(b,	c),	then	equal(a,	c)		for	any	…

– (311 alert: this is an “equivalence relation”)
– Java has two more rules for equals (see Java docs)

reflexive

symmetric

transitive

Example: Duration

• Define Duration representing an amount of time

type Duration	=	{min	:	ℤ,	sec	: ℤ}		with		0	≤	sec	<	60

– second part is an invariant

• Can define equality on Duration this way:

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

– true iff these are the same amount of time
(wouldn’t be true without the invariant)

Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive

equal({min:	m,	sec:	s},	{min:	m,	sec:	s})
=	(m	=	m)	and	(s	=	s) def of equal
=	T	and	T
=	T

– symmetric

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})
=	(m	=	n)	and	(s	=	t) def of equal
=	(n	=	m)	and	(t	=	s)
=	equal({min:	n,	sec:	t},	{min:	m,	sec:	s}) def of equal

proof by calculation

Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive yes
– symmetric yes
– transitive also yes (but a little long for a slide)

• Good evidence that this is a reasonable definition

Example: List Equality

• Can define equality on List type this way:

equal(nil,	nil) := T
equal(nil,	cons(b,	R)) := F
equal(cons(a,	L),	nil) := F
equal(cons(a,	L),	cons(b,	R)) := F if	a	≠	b
equal(cons(a,	L),	cons(b,	R)) := equal(L,	R) if	a	=	b

• Checks that the values in the list are all the same
– this is a definition, so we can only check it on examples…

1 2 1 2equal(,) 2 2=	equal(,)

=	equal(nil,	nil)

=	T

=	equal(,)equal(,)

Example: List Equality

• Can define equality on List type this way:

equal(nil,	nil) := T
equal(nil,	cons(b,	R)) := F
equal(cons(a,	L),	nil) := F
equal(cons(a,	L),	cons(b,	R)) := F if	a	≠	b
equal(cons(a,	L),	cons(b,	R)) := equal(L,	R) if	a	=	b

• Checks that the values in the list are all the same
– this is a definition, so we can only check it on examples…

1 2 1 3 2 3

=	F

Example: List Equality

• Can define equality on List type this way:

equal(nil,	nil) := T
equal(nil,	cons(b,	R)) := F
equal(cons(a,	L),	nil) := F
equal(cons(a,	L),	cons(b,	R)) := F if	a	≠	b
equal(cons(a,	L),	cons(b,	R)) := equal(L,	R) if	a	=	b

• Has all three required properties
– how would we prove this? induction

Recall: Subtypes of Concrete Types

• We initially defined types as sets

• In math, a subtype can be thought of as a subset
– e.g., the even integers are a subtype of ℤ
– e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of ℤ
– likewise, a superset would be a supertype

• Any even integer “is an” integer
– “is a” is often (but not always) good intuition for subtypes

Recall: Subtypes of Abstract Types

• Subtypes are substitutable for supertype
– this is the “Liskov substitution principle”
– due to Barbra Liskov

• For ADTs, we use this as our definition of subtype

• When is ADT B substitutable for A?

1. B must provide all the methods of A
If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method spec must be stronger than A’s
must accept all the inputs that A’s does
must also promise everything in A’s postcondition

Example: Duration Again

// Represents an amount of time measured in seconds
class Duration {

// RI: 0 <= sec < 60
// AF: obj = 60 * this.min + this.sec
readonly min: number;
readonly sec: number;

equal = (d: Duration): boolean => {
return this.min === d.min && this.sec === d.sec;

};

…

– defines Duration as an ADT instead
getMinutes and getSeconds methods not shown
equal still makes sense, just as before

Example: NanoDuration

• Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

// min: number (inherited)
// sec: number (inherited)
readonly nano: number;

…

• How should we define equal?
– remember that it takes an argument of type Duration

we cannot accept fewer arguments

Example: NanoDuration

class NanoDuration extends Duration {

// min: number (inherited)
// sec: number (inherited)
readonly nano: number;

equal = (d: Duration): boolean => {
if (d instanceof NanoDuration) {

return this.min === d.min &&
this.sec === d.sec &&

this.nano === d.nano;
} else {

return false;

}
};

– does this have the three required properties?

No! It lacks symmetry

Must take Duration
argument to be a subtype

Example: NanoDuration

const d = new Duration(2, 10);
const n = new NanoDuration(2, 10, 300);

console.log(n.equal(d));

console.log(d.equal(n));

– NanoDuration is only equal to other NanoDurations

– Duration can be equal to a NanoDuration
if they have the same minutes and seconds

// false

// true!

Example: NanoDuration

class NanoDuration extends Duration {

// min (inherited)
// sec (inherited)
readonly nano: number;

equal = (d: Duration): boolean => {
if (d instanceof NanoDuration) {

return this.min === d.min &&
this.sec === d.sec &&

this.nano === d.nano;
} else {

return this.min == d.min && this.sec == d.sec;

}
};

– fixes symmetry! all good now?

No! It lacks transitivity

Example: NanoDuration

const n1 = new NanoDuration(2, 10, 300);
const d = new Duration(2, 10);

const n2 = new NanoDuration(2, 10, 400);

console.log(n1.equal(d));
console.log(d.equal(n2));

console.log(n1.equal(n2));

– transitivity requires n1 to equal n2 (but it doesn’t)

// true

// true

// false!

Subclasses and Equals Don’t Always Mix

• No good solution to this problem!
– inherent tension between subtyping and equality

subtyping wants subclasses to behave the same
equality wants to treat them differently (using extra information)

• This is a general problem for “binary operations”
– equality is just one example

• Real issue may be that NanoDuration isn’t a subtype
– subclass does not mean subtype
– (would have seen this if we documented the ADT properly)

Example: NanoDuration Again

• Suppose a subclass also measures nanoseconds

// Represents an amount of time in nanoseconds
class NanoDuration extends Duration {

// RI: 0 <= sec < 60 and 0 <= nano < 10000
// AF: obj = 60,000,000 * this.min +
// 1,000,000 * this.sec +
// this.nano
readonly nano: number;

}

• Abstract states of the two types are different
– time in seconds vs nanoseconds
– abstract states of subtypes would need to be subtypes

Constructors

Public Constructors

• Most Java classes have public constructors
– e.g., create an ArrayList with “new ArrayList<String>()”

• For our ADTs, we didn’t do this
– class was hidden (not exported)
– we exported a “factory function” that used the constructor

e.g., makeSortedNumberSet

– this was not accidental…

• Constructors have undesirable properties
– surprisingly error-prone
– several important limitations

Recall: Tight Coupling (Example 3)

class WorkList {
// RI: len(names) = len(times) and total = sum(times)
protected ArrayList<String> names;
protected ArrayList<Integer> times;

protected int total;

public addWork(Job job) {
int time = job.getTime(); // just one call
total += time;
addToLists(job.getName(), time);

}

}

RI is not true in method call!

Method Calls from Constructors

• Any method call from a constructor is dangerous!

• Almost always calling with RI false
– usually, the RI does not hold until all fields are assigned

typically, that is the last line of the constructor

– hence, any methods are called with the RI still false

• Asking for trouble!
– method needs to know that some parts of RI may be false
– eventually, someone changing code will mess this up
– better to avoid method calls in the constructor

Limitations of Constructors

• Constructor is called after the object is created
– can’t decide, in the constructor, not to create it

• Limitations of constructors

1. Cannot return an existing object

2. Cannot return a different class

3. Does not have a name!

Singleton

• Factory functions can return an existing object

• Common case: there is only one instance!
– factory function can avoid creating new objects each time
– called the “singleton” design pattern

• Example from HW5…

Example: Singleton in HW5

// @returns ColorList containing all known colors
export const makeSimpleColorList = (): ColorList => {

return new SimpleColorList(COLORS);
}

– every object returned is the same
– no need to make more than one

const simpleColorList = new SimpleColorList(COLORS);

// @returns ColorList containing all known colors
export const makeSimpleColorList = (): ColorList => {

return simpleColorList;
}

Note: only allowed because SimpleColorList is immutable

Returning a Subtype

• Factory functions can return a subtype
– declared to return A but returns subtype B instead
– allowed since every B is an A

• Example:
// @returns an empty NumberSet that can be used to
// store numbers between min and max (inclusive)
const makeNumberSet = (min: number, max: number): NumberSet => {
if (0 <= min && max <= 100) {

return makeArrayNumberSet(); // only supports small sets
} else {
return makeSortedNumberSet(); // use a tree instead

}

}

Multiple Constructors

• Java classes allow multiple constructors

class HashMap {
public HashMap() { … } // initial capacity of 16
public HashMap(int initialCapacity) { … }

}

• TypeScript classes do not, but
you can fake it with optional arguments

class HashMap {

constructor(initialCapacity?: number) { ... }
}

Constructors Have No Name

• Do not get to name constructors
– in Java, same name as the class
– in TypeScript, called “constructor”

• Names are useful

1. Let you distinguish between different cases
– use names to distinguish cases that otherwise look the same

2. Let you explain what it does
– the only thing you know the client will read!

Example: Distinguishing Constructors

• JavaScript’s Array has multiple constructors

new Array() // creates []

new Array(a1, …, aN) // creates [a1, …, aN]

new Array(2) // creates [undefined, undefined]

– what does “new Array(a1)” return when a1 is a number?
– how to make a 1-element array containing just a1

const A = new Array(1);
A[0] = a1;

– don’t have a name to distinguish these cases!

Example: Distinguishing Constructors

• Factory Functions have names
– allow us to distinguish these cases

// @returns []
const makeEmptyArray = (): Array => { … };

// @returns A with A.length = len and
// A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { … };

// @returns [args[0], …, args[N-1]]
const makeArrayContaining = (...): Array => { … };

Example: Distinguishing Constructors

• Factory Functions have names
– allow us to distinguish these cases

// @returns []
const makeEmptyArray = (): Array => { … };

// @returns A with A.length = len and
// A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { … };

// @returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { … };

Be very, very careful…
Type checker won’t notice if client mixes these up!

Argument Order Bugs

• Some famous bugs due to mixing up argument order!

• If you program long enough, you will see this one
– … and just about every other bug

Use Records to Force Call-By-Name

• Can use a record to make clients type names

// @returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(desc: {len: number, value: number}): Array

– takes one argument, not two
– client writes “makeFilledArray({len: 3, value: 0})”

• Think about mistakes clients might make
– be paranoid when debugging will be painful

