
Full Stack 3: To App It All Off
Kevin Zatloukal

CSE 331

Administrivia

• HW8 due tonight
combines HW3-5 (functional UI) with HW7 (servers)

• Section tomorrow on debugging
– will email instructions on the code setup for class

• HW9 released tomorrow night
– 9 days to finish it
– start early

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Writing the Client

Design on the Client Side

• Component state is tightly coupled with UI on screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what components do you need to show that UI

different “pages” should be different components

– what information do you need to draw each component
must be provided in props or stored in state

Example: Auction UI

• Auction site has three different “pages”

• Need four different components:
– Auction List: shows all the auctions (and Add button)
– Auction Details: shows details on the auction (w Bid button)
– New Auction: lets the user describe a new auction
– App: decides which of these pages to show

Design on the Client Side

• Component state is tightly coupled with UI on screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what components do you need to show that UI

different “pages” should be different components

– what information do you need to draw each component
must be provided in props or stored in state

Auction Client: NewAuction.tsx

– figured out the props before
– what state should we store?

New Auction

Start

Seller

Min Bid

Bob

100

Ends In 100

Name Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minBid: string,
 minutes: string
};

Note that user input is a string!
(We will need to check validity.)

Auction Client: NewAuction.tsx

– need to validate the input before creating an auction
– show an error message

New Auction

Start

Seller

Min Bid 100

Ends In 100

Name Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string,
 error: string
};

Error: a required field is missing

Auction Client: NewAuction.tsx

– If all checks pass, we can create the auction

doStartClick = (): void => {
// Check that all fields were provided.
…

// Check that minutes & minBid are a positive integers.
const minutes: number = …;
…
// Can now use callback to start the auction...
this.props.onStartClick(this.state.name, this.state.seller,

this.state.description, minutes, minBid);
};

– This calls doStartClick in App

Auction Client: App.tsx

doStartClick = (name: string, seller: string, desc: string,
minutes: number, minBid: number): void => {

// Ends this many minutes from now (convert to ms)
const endTime = Date.now() + minutes * 60 * 1000;

// Seller keeps it if no one bids min or higher
const maxBid = minBid – 1;

const maxBidder = this.state.seller;

const auction = {

seller: this.state.seller,
name: this.state.name,
description: this.state.description,
endTime, maxBid, maxBidder };

const auctions = this.state.auctions.concat([auction])
this.setState({page: “list”, auctions: auctions});

};

Auction Client: AuctionDetails.tsx

– Needs to know the current time
if it is past auction end time, show left; otherwise, show right

type DetailsState = {

now: number,
bidder: string,
amount: string,
error: string

};

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Current Bid: $250

Name

Bid

Fred

251 Back

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Final Bid: $250

Won By: Alice

Auction Client: AuctionDetails.tsx

– use the current time to decide how to draw

render = (): JSX.Element => {

const auction = this.props.auction;
if (auction.endTime <= this.state.now) {
return this.renderCompleted();

} else {

return this.renderOngoing();
}

};

– add a “Refresh” button to update UI to current time

// User clicked the Refresh button.
doRefreshClick = (_evt: MouseEvent<HTMLButtonElement>) => {

this.setState({now: Date.now(), error: ""});
};

Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doBidClick =
(index: number, bidder: string, amount: number) => {

const oldVal = this.state.auctions[index];
const newVal = { … // oldVal except for:

maxBid: amount, maxBidder: bidder};

const auctions = this.state.auctions.slice(0, index)
.concat([newVal])

.concat(this.state.auctions.slice(index+1));
this.setState({auctions: auctions});

};

Note: there is subtle issue here we will discuss later…

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it re-renders and calls componentDidUpdate

just as state can change, props can change

– you can detect a props change there

componentDidUpdate = (prevProps: HiProps): void => {

if (this.props.field !== prevProps.field) {

… // our props were changed!
}

};

– better to avoid this if possible
good setup for painful debugging

Auction Client: AuctionDetails.tsx

– Often arises when props used to set initial state values
– Here, we initialize bid amount to be valid

constructor(props: DetailsProps) {
super(props);

const amount = this.props.auction.maxBid + 1;

this.state = {now: Date.now(),
bidder: "", amount: ’’ + amount, error: ""};

}

– When auction changes, want to update state to match
happens each time we call onBidClick to update the auction!
in that case, old bid amount is no longer valid

Auction Client: AuctionDetails.tsx

– When auction changes, update state to match:

componentDidUpdate = (prevProps: DetailsProps): void => {
if (prevProps.auction !== this.props.auction) {
const amount = parseFloat(this.state.amount);
const minBid = this.props.auction.maxBid + 1;

if (!isNaN(amount) && amount < minBid) {
this.setState({amount: ’’ + minBid});

}

}
};

– Fixes a stale amount to be a legal value again
(must be careful changing text the user typed, but this case is okay.)

– (Note: code also updates “now” and “error” here.)

Auction Client: AuctionList.tsx

– Figured out the props before. This HTML:

return <AuctionList auctions={this.state.auctions}
onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

means these props:

type ListProps = {
auctions: ReadonlyArray<Auction>,

onNewClick: () => void,
onAuctionClick: (index: number) => void // clicked on one

};

– How do we figure out the state?
look at the UI

Auction Client: AuctionList.tsx

– Needs to know the current time for text on right
if it is past auction end time, show left; otherwise, show right

type ListState = {

now: number
};

– Could replace Refresh with a timer
timer calls refresh every 10 seconds, say

– Nothing else new in AuctionList.tsx

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New Refresh

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Writing the Server

Writing the Server

• First decide what data to store in the server
– what parts of the UI do we not want to disappear on refresh?

• For the auction app:
– need to keep the auctions: Auction[]
– don’t need to keep other parts

which page we are on
text in any of the text boxes

Writing the Server

• Next decide what read operations we need
– these will become GET requests

• Simplest case is when the client can store all data
– just let the client retrieve all of it
– with lots of data, client would need to query a subset

• For the auctions app:
– /api/list returns all the auctions

Auction Server: routes.ts

// List of all auctions, in order by creation time (only pushed)
const auctions: Auction[] = [];

/**
* Returns a list of all the auctions, sorted so that the
* ongoing auctions come first and the completed ones after. …
*/
export const listAuctions =

(_req: SafeRequest, res: SafeResponse): void => {

res.send({auctions: auctions});
};

Writing the Server

• Next decide what update operations we need
– these will become POST requests
– what updates do we make to that data in the client?

• For the auctions app:
– look in App.tsx to see how we change auctions

no other component is allowed to modify the auctions array

– we change it in two ways:
1. add a new auction
2. change an auction to have a new highest bidder

Writing the Server

• Next decide what update operations we need
– these will become POST requests
– what updates do we make to that data in the client?

• For the auctions app:
– /api/add adds an auction
– /api/bid updates to a new, higher bid

better to have a more specific update vs general “change” operation
can do more error checking with more specific updates

Auction Server: routes.ts

export const addAuction =

(req: SafeRequest, res: SafeResponse): void => {

const name = req.body.name;
if (typeof name !== 'string') {

res.status(400).send("missing 'name' parameter");

return;
}
// check the others (including minutes & minBid are valid ints)
…

const endTime = Date.now() + minutes * 60 * 1000; // in ms
const auction: Auction = { id: auctions.length,

name: name, description: description, seller: seller,
endTime: endTime, maxBid: minBid - 1, maxBidder: seller };

auctions.push(auction); // add this to the list
res.send({auction: auction}); // send this to the client

};

Testing the Server

• Write unit tests for each route
– test creates fake request and response objects
– some tests may need to apply multiple operations

need to perform a few /api/add and then /api/list

• Test the server thoroughly before continuing
– debugging later will be painful, so make sure it’s right!

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Connecting Client & Server

Recall: Finishing Step 3 for To-Do List

• Rewrote client-side To-Do App into client-server

• Instead of simply updating state:
– make a request to the server to have it update state
– once that completes, we update the client’s state
– this keeps the two copies of the state in sync

Recall: Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response
3. handler for fetched JSON
4. handler for errors

fetch status code

response data

error messagedoListResp

doListError

doListJsonresponse

200

400/api/list

Recall: Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doStartClick = (name: string, seller: string, …): void => {

const auction = {name, seller, …}; // the new auction
const auctions = this.state.auctions.concat([auction]);
this.setState({page: “list”, auctions: auctions});

};

Auction Client: App.tsx

– change start to make a request to the server

doStartClick = (name: string, seller: string, …): void => {
const args = {name, seller, description, minutes, minBid);
fetch("/api/add", {

method: "POST", body: JSON.stringify(args),

headers: {"Content-Type": "application/json"} })
.then(this.doAddResp)
.catch(() => this.doAddError("failed to connect to server"));

};

Auction Client: App.tsx

– change start to make a request to the server

doAddResp = (resp: Response): void => {
if (resp.status === 200) {
resp.json().then(this.doAddJson)

.catch(() => this.doAddError("not JSON"));
} else if (resp.status === 400) {
resp.text().then(this.doAddError)

.catch(() => this.doAddError("not text"));
} else {
this.doAddError(`bad status code: ${resp.status}`);

}
};

doAddError = (msg: string): void => {
console.error(`Error fetching /api/add: ${msg}`);

};

Auction Client: App.tsx

– change start to make a request to the server

doAddJson = (data: unknown): void => {
if (!isRecord(data)) {
console.error("bad data from /api/add: not a record", data);
return;

}

const auction = parseAuction(data.auction);
if (auction !== undefined) {

const auctions = this.state.auctions.concat([auction]);
this.setState({page: “list”, auctions: auctions});

} else {

console.error(“not an auction”, data.auction);
}

};

One More Feature

• Another user can bid on the item we are viewing
– no way to find out about it without talking to the server
– need a way to update the page without bidding

• Simple option: add a “Refresh” button
– requires /api/get on the server also
– “get” same as “bid” but we don’t change the auction

• Same fix to componentDidUpdate needed here
– the App is redrawing with different props
– need to update this.state.now
– NOTE: same now applies to AuctionList!

Improving the App

Summary

• Client / Server version more complicated
– extra invariant: client & server copies of Auction[] match
– will be a bug if these ever get out of sync!

• Positives of this approach
– fairly mechanical way to turn client-only into client-server
– works well for single-user apps

• Negatives of this approach
– some logic is duplicated in client & server
– indexes are brittle

could not sort the auctions list without potentially breaking the client

Alternative Approach

• Do more work only in the server
– eliminate duplicate work
– eliminate the extra invariant (no copy in client)

• Will need to make more server requests
– client no longer has all the data
– every component will talk to the server

• Server is free to:
– use more complex data structures

we will switch to a Map (as in HW7-8)

– implement new algorithms
we will sort the auctions into completed and not completed

Writing the Client

Auction Client: App.tsx

– state needs to indicate which page to be showing

type Page = “list” | “new” |

{kind: “details”, name: string};

type AppState = {page: Page, auctions: Auction[]};

class App extends Component<{}, AppState> { … }

– identify an auction by the item name
– no longer storing the list of auctions here

Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {
if (this.state.page === “list”) {
return <AuctionList auctions={this.state.auctions}

onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

} else if (this.state.page === “new”) {
return <NewAuction onStartClick={this.doStartClick}

onBackClick={this.doBackClick}/>;

} else { // kind: “details”
return <AuctionDetails name={this.state.page.name}

onBidClick={this.doBidClick}
onBackClick={this.doBackClick}/>;

}

};

– the App gets much simpler! (only 3 event handlers, no requests)

Auction Client: AuctionList.tsx

– List of Auctions now in state, not props

type ListProps = {

auctions: ReadonlyArray<Auction>,

onNewClick: () => void,
onAuctionClick: (name: string) => void // clicked on one

};

type ListState = {

now: number,
auctions: Auction[] | undefined

};

– Fetch the list in componentDidMount
code moves from App.tsx to AuctionList.tsx

– No longer matters what order the list returned is in

Auction Client: NewAuction.tsx

– If all checks pass, we can create the auction

doStartClick = (): void => {

// Check that all fields were provided.
…
// Check that minutes & minBid are a positive integers.
const minutes: number = …;

…
// Ask the server to add this auction…
this.props.onStartClick(this.state.name, this.state.seller,

this.state.description, minutes, minBid);
fetch(“/api/add”, {..})
.then(this.doAddResp)
.catch(() => this.doAddError(“failed to connect”));

};

– Code moves from App.tsx to AuctionList.tsx

Auction Client: NewAuction.tsx

– Navigate to AuctionList once this completes:

doAddJson = (data: unknown): void => {

if (!isRecord(data)) {

console.error("bad data: not a record", data);
return;

}

this.props.onBackClick(); // show the updated list
};

doAddError = (msg: string): void => {

this.setState({error: msg})
};

– Request can fail due to duplicate auction name
show this error message to the user, so they can fix it

Auction Client: AuctionDetails.tsx

– The Auction is now in state, not props

type DetailsProps = {

name: string,
onBidClick: (bidder: string, amount: number) => void,
onBackClick: () => void

};

type DetailsState = {

now: number,
auction: Auction | undefined,
bidder: string,
amount: string,
error: string

};

– Fetch the list in componentDidMount
code moves from App.tsx to AuctionDetails.tsx

Auction Client: AuctionDetails.tsx

– The Auction is now in state, not props

type DetailsProps = {

name: string,
onBidClick: (bidder: string, amount: number) => void,
onBackClick: () => void

};

type DetailsState = {

now: number,
auction: Auction | undefined,
bidder: string,
amount: string,
error: string

};

– Note: no longer need componentDidUpdate!!

Auction Client: AuctionDetails.tsx

– Handle the bidding within this component

doBidClick = (): void => {

// Check that bidder was provided.
// Check that amount is a valid bid.
const amount: number = …;
…

// Ask the server to update the bid for this auction…
this.props.onBidClick(this.state.bidder, amount);
fetch(“/api/bid”, {..})

.then(this.doBidResp)

.catch(() => this.doBidError(“failed to connect”));
};

– Code moves from App.tsx to AuctionList.tsx

Auction Client: AuctionDetails.tsx

– Navigate to AuctionList once this completes:

doBidJson = (data: unknown): void => {

if (!isRecord(data)) {

console.error("bad data: not a record", data);
return;

}

// Update state to show auction in data.auction
…

};

doBidError = (msg: string): void => {

this.setState({error: msg})
};

– Request can fail if someone else outbid since refresh
this approach works better with multiple users

Writing the Server

Auction Server: routes.ts

// Map from name to auction information
const auctions: Map<string, Auction> = new Map();

// Put ongoing auctions before completed ones, and
// those about to complete before those completing later.
const compareAuctions = (a: Auction, b: Auction): number => …

/**
* Returns a list of all the auctions, sorted so that the
* ongoing auctions come first and the completed ones after. …
*/
export const listAuctions =

(_req: SafeRequest, res: SafeResponse): void => {
const vals = Array.from(auctions.values());
vals.sort(compareAuctions);

res.send({auctions: vals});

};

Auction Server: routes.ts

export const getAuction =

(req: SafeRequest, res: SafeResponse): void => {

const name = req.body.name;
if (typeof name !== "string") {

res.status(400).send("missing or invalid 'name' parameter");

return;
}

const auction = auctions.get(name);
if (auction === undefined) {

res.status(400).send(`no auction with name '${name}'`);

return;
}

res.send({auction: auction}); // send current auction state
};

What’s Still Missing?

• See everything we need for proof-of-concept apps
– can test these with real users

• For non-demo, can’t store user data on one machine
– machines break, hard drives fail, etc.

• Sharing state between servers is complex
– requires even more sophisticated invariants
– see 452 for more on this

What’s Still Missing?

• Most apps use dedicate storage servers
– see 344 for sophisticated storage services

• Especially easy to do this with Map
– many options for extremely scalable Map services
– easy to swap out an in-memory Map for a service

• Our server becomes a client (“front-end server”)
– read/write from the map service is like a fetch

event handlers in the server now

– server can now be functional!
easier to get everything right

