
Full Stack II: Put On Your Thinking App

Kevin Zatloukal

CSE 331

Recall: Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Example: Auction Site

• Initial page shows user a list of auctions
– can also add their own

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

can click on item name

New can click on New

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Show an error if the user:
• does not enter a name
• enters a non-number bid
• enters a bid smaller than the current bid

Current Bid: $250

Name

Bid

Fred

251 click Bid to bid

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Don’t let users bid if the auction is over.

Instead, show who won the auction.

Final Bid: $250

Won By: Alice

Sold By: Bob

Example: Auction Site

• Clicking on New allows the user to start a new auction
– user provides the full details of the item to auction

New Auction

Start

Name

Min Bid

Bob

100

click Start to start auction

Ends In 100

Item Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Writing the Client

Design on the Client Side

• Component state is tightly coupled with UI on screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what components do you need to show that UI

different “pages” should be different components

– what information do you need to draw each component
must be provided in props or stored in state

Example: Auction UI

• Auction site has three different “pages”

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Current Bid: $250

Name

Bid

Fred

251

New Auction
Name Bob

Item Table Lamp

…

Example: Auction UI

• Auction site has three different “pages”

• Need four different components:
– Auction List: shows all the auctions (and Add button)
– Auction Details: shows details on the auction (w Bid button)
– New Auction: lets the user describe a new auction
– App: decides which of these pages to show

Auction Client: App.tsx

– state needs to indicate which page to be showing

type Page = “list” | “new” |

{kind: “details”, index: number};

type AppState = {page: Page, auctions: Auction[]};

class App extends Component<{}, AppState> { … }

– storing the list of auctions here
easiest option, easy to pass it to any page

Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {
if (this.state.page === “list”) {
return <AuctionList auctions={this.state.auctions} …/>;

} else if (this.state.page === “new”) {

return <NewAuction …/>;

} else { // kind: “details”
const index = this.state.page.index;
const auction = this.state.auctions[index];
return <AuctionDetails auction={auction} …/>;

}
};

Example: Auction UI

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New
Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Current Bid: $250

Name

Bid

Fred

251
New Auction

Name Bob

Item Table Lamp

…

Back

Start Back

Each page will need callbacks
to change what page is showing

Example: Auction UI

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New
Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Current Bid: $250

Name

Bid

Fred

251
New Auction

Name Bob

Item Table Lamp

…

Back

Start Back onBackClick

onBackClickonBidClick

onStartClick

onNewClick

onAuctionClick

Each page will need callbacks
to change what page is showing

Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {
if (this.state.page === “list”) {
return <AuctionList auctions={this.state.auctions}

onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

} else if (this.state.page === “new”) {
return <NewAuction onStartClick={this.doStartClick}

onBackClick={this.doBackClick}/>;

} else { // kind: “details”
const index = this.state.page.index;
const auction = this.state.auctions[index];
return <AuctionDetails auction={auction}

onBidClick={this.doBidClick}
onBackClick={this.doBackClick}/>;

}

};

Auction Client: App.tsx

– event handlers change what is shown

doNewClick = (): void => {

this.setState({page: “new”}); // show new auction page
};

doBackClick = (): void => {

this.setState({page: “list”}); // show auction list page
};

doAuctionClick = (index: number): void => {
// show details list page for the given auction
this.setState({page: {kind: “details”, index: index}});

};

Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doStartClick = (name: string, seller: string, …): void => {
const auction = {name, seller, …}; // the new auction
const auctions = this.state.auctions.concat([auction]);
this.setState({page: “list”, auctions: auctions});

};

Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {
if (this.state.page === “list”) {
return <AuctionList auctions={this.state.auctions}

onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

} else if (this.state.page === “new”) {
return <NewAuction onStartClick={this.doStartClick}

onBackClick={this.doBackClick}/>;

} else { // kind: “details”
const index = this.state.page.index;
const auction = this.state.auctions[index];
return <AuctionDetails auction={auction}

onBidClick={(n, a) => this.doBidClick(index, n, a)}
onBackClick={this.doBackClick}/>;

}

};

Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doBidClick =
(index: number, bidder: string, amount: number) => {

const oldVal = this.state.auctions[index];
const newVal = { … // oldVal except for:

maxBid: amount, maxBidder: bidder};

const auctions = this.state.auctions.slice(0, index)
.concat([newVal])

.concat(this.state.auctions.slice(index+1));
this.setState({auctions: auctions});

};

Note: there is subtle issue here we will discuss later…

Design on the Client Side

• Component state is tightly coupled with UI on screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what components do you need to show that UI

different “pages” should be different components

– what information do you need to draw each component
must be provided in props or stored in state

Auction Client: NewAuction.tsx

– Figured out the props before. This HTML:

return <NewAuction onStartClick={this.doStartClick}
onBackClick={this.doBackClick}/>;

means these props:

type NewAuctionProps = {
onBackClick: () => void, // when user clicks “Back”
onStartClick: (name: string, seller: string, …) => void

};

Auction Client: NewAuction.tsx

– figured out the props before
– what state should we store?

New Auction

Start

Seller

Min Bid

Bob

100

Ends In 100

Name Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minBid: string,
 minutes: string
};

Note that user input is a string!
(We will need to check validity.)

Auction Client: NewAuction.tsx

– state must mirror input on the screen:

render = (): JSX.Element => {
…

<label htmlFor=“seller”>Seller Name:</label>

<input id=“seller” type=“text” value={this.state.seller}
onChange={this.onSellerChange}/>

…
}

onSellerChange = (evt: ChangeEvent<HTMLInputElement>) => {

this.setState({seller: evt.target.value});
};

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string
};

Auction Client: NewAuction.tsx

– state must mirror input on the screen:

render = (): JSX.Element => {
…

<label htmlFor=“minutes”>Minutes:</label>

<input id=“minutes” type=“number”
value={this.state.minutes}
onChange={this.onMinutesChange}/>

…

}

onMinutesChange = (evt: ChangeEvent<HTMLInputElement>) => {

this.setState({minutes: evt.target.value});
}; type NewAuctionState = {

 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string
};

type=“number” prevents text that isn’t a number
but “” is still allowed

Auction Client: NewAuction.tsx

– need to validate the input before creating an auction
– show an error message

New Auction

Start

Name

Min Bid 100

Ends In 100

Item Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string,
 error: string
};

Error: a required field is missing

Auction Client: NewAuction.tsx

– state records whether an error is showing

render = (): JSX.Element => {
…

{this.renderError()}
…

}

renderError = (): JSX.Element => {

if (this.state.error === “”) {
return <div></div>; // show nothing

} else {

return <div>Error: {this.state.error}</div>;
}

};

Auction Client: NewAuction.tsx

– update the state to show an error

doStartClick = (): void => {
if (this.state.seller.trim().length === 0) {
// re-render with an error message
this.setState({error: “seller name is missing”});
return;

}
…

}

onSellerChange = (evt: ChangeEvent<HTMLInputElement>) => {

this.setState({seller: evt.target.value,
error: “”}); // remove error message

};

Auction Client: NewAuction.tsx

– update the state to show an error

doStartClick = (): void => {
// Check that all fields were provided.
…

// Check that minutes is a positive integer.
const minutes = parseFloat(this.state.minutes);
if (isNaN(minutes) || minutes < 1 ||

Math.floor(minutes) !== minutes) {

this.setState(
{error: “minutes is not a positive integer”});

return;
}
…

};

Auction Client: NewAuction.tsx

– If all checks pass, we can create the auction

doStartClick = (): void => {
// Check that all fields were provided.
…

// Check that minutes & minBid are a positive integers.
const minutes: number = …;
…
// Can now use callback to start the auction...
this.props.onStartClick(this.state.name, this.state.seller,

this.state.description, minutes, minBid);
};

– What data goes in the auction?
State of NewAuction is for what it needs to draw.
Auction created is for AuctionDetails and AuctionList to draw.

Auction Client: NewAuction.tsx

– Look at other UI to see what data Auction needs

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

type Auction = {
 seller: string,
 name: string,
 description: string,
 endTime: number, // need to know when auction ends
 maxBid: number, // need to know current max bid
 maxBidder: string, // need to know who is winning
};

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Final Bid: $250

Won By: Alice

Sold By: Bob

Auction Client: App.tsx

doStartClick = (name: string, seller: string, desc: string,
minutes: number, minBid: number): void => {

// Ends this many minutes from now (convert to ms)
const endTime = Date.now() + minutes * 60 * 1000;

// Seller keeps it if no one bids min or higher
const maxBid = minBid – 1;

const maxBidder = this.state.seller;

const auction = {

seller: this.state.seller,
name: this.state.name,
description: this.state.description,
endTime, maxBid, maxBidder };

const auctions = this.state.auctions.concat([auction])
this.setState({page: “list”, auctions: auctions});

};

Auction Client: AuctionDetails.tsx

– Figured out the props before. This HTML:

return <AuctionDetails auction={auction}

onBidClick={this.doBidClick}
onBackClick={this.doBackClick}/>;

means these props:

type DetailsProps = {
auction: Auction,

// update the highest bid to this
onBidClick: (bidder: string, amount: number) => void,
onBackClick: () => void

};

– How do we figure out the state?
look at the UI

Auction Client: AuctionDetails.tsx

– Needs to know the current time
if it is past auction end time, show left; otherwise, show right

type DetailsState = {

now: number,
bidder: string,
amount: string,
error: string

};

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Current Bid: $250

Name

Bid

Fred

251 Back

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Final Bid: $250

Won By: Alice

Auction Client: AuctionDetails.tsx

– use the current time to decide how to draw

render = (): JSX.Element => {

const auction = this.props.auction;
if (auction.endTime <= this.state.now) {
return this.renderCompleted();

} else {

return this.renderOngoing();
}

};

– add a “Refresh” button to update UI to current time

// User clicked the Refresh button.
doRefreshClick = (_evt: MouseEvent<HTMLButtonElement>) => {

this.setState({now: Date.now(), error: ""});
};

Recall: Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doBidClick =
(index: number, bidder: string, amount: number) => {

const oldVal = this.state.auctions[index];
const newVal = { … // oldVal except for:

maxBid: amount, maxBidder: bidder};

const auctions = this.state.auctions.slice(0, index)
.concat([newVal])

.concat(this.state.auctions.slice(index+1));
this.setState({auctions: auctions});

};

Note: there is subtle issue here we will discuss later…

Recall: Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {
if (this.state.page === “list”) {
return <AuctionList auctions={this.state.auctions}

onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

} else if (this.state.page === “new”) {
return <NewAuction onStartClick={this.doStartClick}

onBackClick={this.doBackClick}/>;

} else { // kind: “details”
const index = this.state.page.index;
const auction = this.state.auctions[index];
return <AuctionDetails auction={auction} // newVal replaced oldVal

onBidClick={(n, a) => this.doBidClick(index, n, a)}
onBackClick={this.doBackClick}/>;

}

}; Re-rendering AuctionDetails with different auction

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it re-renders and calls componentDidUpdate

just as state can change, props can change

– you can detect a props change there

componentDidUpdate = (prevProps: HiProps): void => {

if (this.props.field !== prevProps.field) {

… // our props were changed!
}

};

– better to avoid this if possible
good setup for painful debugging

Auction Client: AuctionDetails.tsx

– Often arises when props used to set initial state values
– Here, we initialize bid amount to be valid

constructor(props: DetailsProps) {
super(props);

const amount = this.props.auction.maxBid + 1;

this.state = {now: Date.now(),
bidder: "", amount: ’’ + amount, error: ""};

}

– When auction changes, want to update state to match
happens each time we call onBidClick to update the auction!
in that case, old bid amount is no longer valid

Auction Client: AuctionDetails.tsx

– When auction changes, update state to match:

componentDidUpdate = (prevProps: DetailsProps): void => {
if (prevProps.auction !== this.props.auction) {
const amount = parseFloat(this.state.amount);
const minBid = this.props.auction.maxBid + 1;

if (!isNaN(amount) && amount < minBid) {
this.setState({amount: ’’ + minBid});

}

}
};

– Fixes a stale amount to be a legal value again
(must be careful changing text the user typed, but this case is okay.)

– (Note: code also updates “now” and “error” here.)

Auction Client: AuctionList.tsx

– Figured out the props before. This HTML:

return <AuctionList auctions={this.state.auctions}
onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

means these props:

type ListProps = {
auctions: ReadonlyArray<Auction>,

onNewClick: () => void,
onAuctionClick: (index: number) => void // clicked on one

};

– How do we figure out the state?
look at the UI

Auction Client: AuctionList.tsx

– Needs to know the current time for text on right
if it is past auction end time, show left; otherwise, show right

type ListState = {

now: number
};

– Could replace Refresh with a timer
timer calls refresh every 10 seconds, say

– Nothing else new in AuctionList.tsx

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New Refresh

