
UI Modularity
Kevin Zatloukal

CSE 331

Last Time: Finishing Step 3 for To-Do List

• Rewrote client-side To-Do App into client-server

• Instead of simply updating state:
– make a request to the server to have it update state
– once that completes, we update the client’s state
– this keeps the two copies of the state in sync

Last Time: Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response
3. handler for fetched JSON
4. handler for errors

fetch status code

response data

error messagedoListResp

doListError

doListJsonresponse

200

400/list

Last Time: Finishing Step 3 for To-Do List

• Rewrote client-side To-Do App into client-server

• Instead of simply updating state:
– make a request to the server to have it update state
– once that completes, we update the client’s state
– this keeps the two copies of the state in sync

• App gets the list from the server…
1. Initially
2. 5 seconds after an item is completed

New TodoApp – Refresh Timeout

// Called to refresh our list of items from the server.
doRefreshTimeout = (): void => {
fetch("/api/list").then(this.doListResp)

.catch(() => this.doListError("failed to connect"));
};

// Called with the response from a request to /api/list
doListResp = (res: Response): void => {
if (res.status === 200) {
res.json().then(this.doListJson)

.catch(() => this.doListError(”200 response is not JSON"));
} else if (res.status === 400) {

res.text().then(this.doListError)
.catch(() => this.doListError(”400 response is not text"));

} else {

this.doListError(`bad status code ${res.status}`);
}

};

New TodoApp – Refresh Timeout

// Called with the JSON response from /api/list
doListJson = (data: unknown): void => {
if (!isRecord(data)) {
console.error("bad data from /list: not a record", data)

return;
}

const items = parseItems(data.items);
if (items !== undefined)
this.setState({items: items});

};

// Called when we fail trying to load the list from the server
doListError = (msg: string): void => {

console.error(`Error fetching /list: ${msg}`);

};

New TodoApp – Refresh Timeout

// Called with the JSON response from /api/list
doListJson = (data: unknown): void => {
if (!isRecord(data)) {
console.error("bad data from /list: not a record", data)

return;
}

const items = parseItems(data.items);
if (items !== undefined)
this.setState({items: items});

};

– often useful to move this type checking to helper functions

New TodoApp – parseItems

// Ensure that this is an array of items. Returns it with that type
// or undefined if invalid (after logging an error message).
const parseItems = (val: unknown): Item[] | undefined => {
if (!Array.isArray(val)) {
console.error(“not an array”, val);

return undefined;
}

const items: Item[] = [];

for (const item of val) {
if (!isRecord(item) || typeof item.name !== 'string’ ||

typeof item.completed !== 'boolean') {

console.error(“not an item”, item);
return undefined;

} else {

items.push({name: item.name, completed: item.completed});
}

}
return items;

};

actual code has
3 separate cases

New TodoApp – Refresh Timeout

// Called with the JSON response from /api/list
doListJson = (data: unknown): void => {
if (!isRecord(data)) {
console.error("bad data from /list: not a record", data)

return;
}

const items = parseItems(data.items);
if (items !== undefined)
this.setState({items: items});

};

– often useful to move this type checking to helper functions
– we provide code for this in HW8

functions toJson / fromJson convert between unknown and Square
(both directions sometimes needed since not all JavaScript is valid JSON)

For .. Of

for (const item of val)

• “for .. of” iterates through array elements in order
– ... or the entries of a Map or the values of a Set

entries of a Map are (key, value) pairs

– fine to use this now
– no need to write an invariant for such loops

do X for each Y is simple enough that we can skip the invariant
(do not abuse this)

Lifecycle Events

Lifecycle Methods

• React also includes events about its “life cycle”
– componentDidMount: UI is now on the screen
– componentDidUpdate: UI was just changed to match render
– componentWillUnmount: UI is about to go away

• Often use “mount” to get initial data from the server
– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {

fetch(“/api/list”)
.then(this.doListResp)
.catch(() => this.doListError(“connect failed”);

};

One More Change

• Don’t have the items initially…

type TodoState = {

items: Item[] | undefined; // items or undefined if loading
newName: string; // mirrors text in name-to-add field

};

renderItems = (): JSX.Element => {
if (this.state.items === undefined) {

return <p>Loading To-Do list...</p>;

} else {

const items = [];
// … old code to fill in array with one DIV per item …
return <div>{items}</div>;

}
};

New TodoApp — Requests

Summary of To-Do List Example

• Built it in the following order:

1. Wrote the client UI with local data
– no client/server interaction at the start

2. Wrote the server
– official store of the data (client state is ephemeral)
– only provided the operations needed by the client

– /list to get the list when the page loads
– /add and /complete are the updates we make (no remove)

3. Connected the client to the server
– used fetch to update data on the server before doing same to client

• These are good steps to write any full-stack app

could swap these

Another Example

More Complex UI

• To-Do List UI is basic
– all of it easily fits in a single component (TodoApp.tsx)

• More complex UI can be too much code for one file
– necessary to split it into multiple components

Recall: Other Properties of High-Quality Code

• Professionals are expected to write high-quality code

• Correctness is the most important part of quality
– users hate products that do not work properly

• Also includes the following:
– easy to understand
– easy to change
– modular

via abstraction

Component Modularity

• Poor design to put all the app in one Component
– it works, but is lacks properties of high-quality code
– better to break it into smaller pieces (modular)

• Two ways to the UI into separate components:

1. Separate parts that are next to each other on screen

2. Separate parts on the screen at different times

Component Modularity

• Separate parts that are next to each other

class App extends Component<..> {
render = (): JSX.Element {

return (<div>
<TitleBar title={“My App”}/>

<SideBar/>

<MainBody/>
</div>);

};
}

SideBar

TitleBar

MainBody

Component Modularity

• Separate parts on the screen at different times

• App is always on the screen
– App chooses which child component to display

– sometimes it has an Editor child and sometimes not

Item Editor Item ListOR

Component Modularity

• Separate parts on the screen at different times

type AppState = {editing: boolean};

class App extends Component<{}, AppState> {

…
render = (): JSX.Element {

if (this.state.editing) {
return <ItemEditor item={this.state.item}/>;

} else {

return <ItemList/>;
}

};
…

}

Example: Auctions

Recall: Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Example: Auction Site

• Initial page shows user a list of auctions
– can also add their own

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

can click on item name

New can click on New

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Show an error if the user:
• does not enter a name
• enters a non-number bid
• enters a bid smaller than the current bid

Current Bid: $250

Name

Bid

Fred

251 click Submit to bid

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Don’t let users bid if the auction is over.

Instead, show who won the auction.

Final Bid: $250

Won By: Alice

Example: Auction Site

• Clicking on New allows the user to start a new auction
– user provides the full details of the item to auction

New Auction

Start

Name

Min Bid

Bob

100

click Start to start auction

Ends In 100

Item Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Writing the Client

Design on the Client Side

• Component state is tightly coupled with UI on screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what components do you need to show that UI

different “pages” should be different components

– what information do you need to draw each component
must be provided in props or stored in state

Example: Auction UI

• Auction site has three different “pages”

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Current Bid: $250

Name

Bid

Fred

251

New Auction
Name Bob

Item Table Lamp

…

Example: Auction UI

• Auction site has three different “pages”

• Need four different components:
– Auction List: shows all the auctions (and Add button)
– Auction Details: shows details on the auction (w Bid button)
– New Auction: lets the user describe a new auction
– App: decides which of these pages to show

Auction Client: App.tsx

– state needs to indicate which page to be showing

type Page = “list” | “new” |

{kind: “details”, index: number};

type AppState = {page: Page, auctions: Auction[]};

class App extends Component<{}, AppState> { … }

– What is Page an example of?
it is an inductive data type (of the “enum” variety)

type Page		:=		list		|		new		|		details(n	:	ℕ)

Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {

if (this.state.page === “list”) {
return <AuctionList auctions={this.state.auctions}

onNewClick={this.doNewClick}
onAuctionClick={this.doAuctionClick}/>;

} else if (this.state.page === “new”) {
return <NewAuction onStartClick={this.doStartClick}

onBackClick={this.doBackClick}/>;

} else { // kind: “details”
const auction = this.state.page.auction;
return <AuctionDetails auction={auction}

onBidClick={this.doBidClick}
onBackClick={this.doBackClick}/>;

}
};

Example: Auction UI

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Current Bid: $250

Name

Bid

Fred

251

New Auction
Name Bob

Item Table Lamp

…

Back

Start Back onBackClick

onBackClickonBidClick

onStartClick

onNewClick

onAuctionClick

Auction Client: App.tsx

– event handlers change what is shown

doNewClick = (): void => {

this.setState({page: “new”}); // show new auction page
};

doBackClick = (): void => {

this.setState({page: “list”}); // show auction list page
};

doAuctionClick = (index: number): void => {
// show details list page for the given auction
this.setState({page: {kind: “details”, index: index}});

};

Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doStartClick = (name: string, seller: string, …): void => {

const auction = {name, seller, …};
const auctions = this.state.auctions.concat([auction]);
this.setState({page: “list”, auctions: auctions});

};

doBidClick = (index: number, bidder: string, amount: number) => {
const newVal = …; // update the auction to have a new high bidder
const auctions = this.state.auctions.slice(0, index)

.concat([newVal])

.concat(this.state.auctions.slice(index+1));
this.setState({auctions: auctions,

page: {kind: ”details”, index: index});
};

