
Stateful UI in React
Kevin Zatloukal

CSE 331

Administrivia

• Midterm on Friday (in class)
– topics that are fair game include:

levels, testing, functional code, induction
imperative code, correctness of loops, ADTs

– review in section Thursday

Administrivia

• HW8 out next Monday
– have 10 calendar days due to Thanksgiving
– puts the pieces together

work on both the client and server (so-called “full stack”)

• Sec8 will be available over the weekend
– not to be submitted, but helpful as usual

Stateful UI in React
(React Components)

Client-Server Interaction

• Client needs to update the UI after getting response
– don’t want to reload the whole page to redraw

reloading is slow and can lose user data (e.g., contents of text fields)

– need a way to update the UI without a reload

GET /new

{text: “Your fav color is?”}

our server
GET /check?answer=blue

{correct: false}

UI in HW1-4

• UI so far was static
– index.tsx calls render to show a fixed UI

UI was different based on query params
but never changed once rendered

• Made the UI change by reloading the page
– change the query params, so it renders something different

UI in HW1-4

• Made the UI change by reloading the page
– change the query params, so it renders something different

const word = params.get(“word”);
if (word === null) {
 root.render(<MakeForm/>);

} else {
 root.render(<ShowResults word={word} ../>);
}

http://localhost:8080/ http://localhost:8080/?word=wooow&...

React Functions

• React let us create custom tags
– e.g., from HW3

root.render(<SquareElem square={sq}/>);

– acts like the call

root.render(SquareElem({square: sq}));

– where SquareElem is function taking a record argument

const SquareElem = (props: {square: Square}): JSX.Element => {..};

• HTML returned by the function is displayed
– “SquareElem” tag is in the HTML
– render spots it, calls the function, and replaces the tag

React Components

• Use a class via <HiElem name={“Fred”}/>
– acts like the call

root.render(new HiElem({name: “Fred”}).render());

– React instantiates the class and calls its render method

• Can do the same with a class (a React Component):

type HiProps = {name: string};

class HiElem extends Component<HiProps, {}> {
 constructor(props: HiProps) {..}
 render = (): JSX.Element => {..}
}

React Components

• Can do the same with a class (a React Component):

type HiProps = {name: string};

class HiElem extends Component<HiProps, {}> {
 constructor(props: HiProps) {
 super(props);
 }

 render = (): JSX.Element => {
 return <p>Hi, {this.props.name}</p>;
 };

}

• React calls render to get the HTML to display
– constructor stores argument in a field called “props”

React Components

• Can do the same with a class (a React Component):

type HiProps = {name: string};

class HiElem extends Component<HiProps, {}> {
 constructor(props: HiProps) {
 super(props);
 }

 render = (): JSX.Element => {
 return <p>Hi, {this.props.name}</p>;
 };

}

• Component is a generic type
– first type parameter is the type of “props”
– second type parameter is for “state”…

No sensible reason to make
Components without state

React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
 constructor(props: HiProps) {
 super(props);

 this.state = {greeting: “Hi”};
 }

• Component is a generic type
– first component is type of this.props (readonly)
– second component is type of this.state

initial value set in the constructor
never directly modified after that

React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {

 render = (): JSX.Element {
 return <p>{this.state.greeting},
 {this.props.name}!</p>;
 };

• render can use both this.props and this.state
– difference 1: caller give us props, but we set our state
– difference 2: we can change our state
– React will automatically re-render when state changes

re-render happens shortly after the state change

React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
 …
 setGreeting = (newGreeting: string): void => {
 this.setState({greeting: newGreeting});
 };

}

• Must call setState to change the state
– directly modifying this.state is a (painful) bug

our linter will prevent this, thankfully

• React will automatically re-render when state changes
– this is the (only) reason to use a Component

React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
 …
 setGreeting = (newGreeting: string): void => {
 this.setState({greeting: newGreeting});
 };

}

• Must call setState to change the state
– directly modifying this.state is a (painful) bug

our linter will prevent this, thankfully

• Only need to supply the fields that have changed
– all the other fields will stay as they were before

React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
 constructor(props: HiProps) {
 super(props);

 this.state = {greeting: “Hi”};
 }

 render = (): JSX.Element {
 return <p>{this.state.greeting},
 {this.props.name}!</p>;
 };

 setGreeting = (newGreeting: string): void => {
 this.setState({greeting: newGreeting});
 };

}

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {
 …
 setGreeting = (newGreeting : string): void => {
 this.setState({greeting: newGreeting});
 };

}

• How could setGreeting be called?
– typically happens in a handler for an HTML event

React Component with an Event Handler

• Pass method to be called as argument (a “callback”)
– value of onClick attribute is our makeSpanish method

 render = (): JSX.Element {
 return (<div>
 <p>{this.state.greeting}, {this.props.name}!</p>
 <button onClick={this.doEspClick}>Espanol</button>
 </div>);

 };

• Browser will invoke that method when button is clicked
 doEspClick = (evt: MouseEvent<HTMLButtonElement>) => {
 this.setState({greeting: “Hola”});
 };

– Call to setState causes a re-render (in a bit)

React Component with an Event Handler

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
 constructor(props: HiProps) {

 super(props);

 this.state = {greeting: “Hi”};
 }

 render = (): JSX.Element {
 return (<div>
 <p>{this.state.greeting}, {this.props.name}!</p>
 <button onClick={this.doEspClick}>Espanol</button>
 </div>);
 };

 doEspClick = (evt: MouseEvent<HTMLButtonElement>) => {

 this.setState({greeting: “Hola”});
 };

React Component with an Event Handler

• Pass method to be called as argument (a “callback”)
– value of onClick attribute is our makeSpanish method

 render = (): JSX.Element {
 return (<div>
 <p>{this.state.greeting}, {this.props.name}!</p>
 <button onClick={this.doEspClick()}>Espanol</button>
 </div>);

 };

• Including parentheses here is a (painful) bug!
– that would call the method inside render

passing its return value as the value of the onClick attribute

– we want to pass the method to the button, and
have it called when the click occurs

React Components are Like ADTs

type HiProps = {name: string};
type HiState = {greeting: string};

• “Props” are part of the specification (arguments)
– public interface, used by clients

root.render(<Hi name={“Fred”}/>); // pass in name

• “State” is like the concrete representation
– private choice of data structures, hidden from clients

constructor(props: HiProps) {
 super(props);

 this.state = {greeting: “Hi”}; // initial state
}

React Components are Like ADTs

• Can have RIs on state as well
– write down any necessary facts not included in the types

// RI: 0 <= index < options.length
type OptionState = {
 options: string[],
 index: number
};

• Good idea to write code to double check this
– a checkRep method is good defensive programming

(see also CheckInv1 in HW7 for complex loops)

React Components are Like ADTs

• HTML on the screen is a (hidden) part of the state
– components work with React to manage this state

• render method is like an AF
– function applied to the state to make something important
– defines what it looks like, rather than what it means

• Components have an extra invariant like an RI

HTML	on	screen	=	render(this.state)

React Components are Like ADTs

	 			HTML	on	screen	=	render(this.state)

t	=	10

Component React

this.state	=	s1 doc	=	HTML1	=	render(s1)

this.setState(s2)

doc	HTML2	=	render(s2)

t	=	20

t	=	30 this.state	=	s2

React updates this.state to s2 and doc to HTML2 simultaneously

React Components are Like ADTs

• Components have an extra invariant like an RI

HTML	on	screen	=	render(this.state)

– don’t want to be in a state where that is not true
unless you like painful debugging!

1. Do not mutate this.state (call setState)
 React will update this.state and HTML on screen at the same time

2. Make sure no data on screen would disappear on re-render
 More on this later…

React Components are Level 3

• Like ADTs, methods are sharing state
– change in one method is read in other methods

• Error in one method (writing) fails in another (reading)
– debugging will be harder!

• Error in the server fails in the client (or vice versa)
– debugging will be harder!

• HW8-9 are the debugging assignments
– necessary to understand all the parts of the code

React Components are Level 3

• Hard debugging makes correctness more important

• Move complex parts into separate functions
– test and reason carefully through those functions
– class is ideally just be rendering and event handlers

move everything complex into helper functions
e.g., calculation of new state can be a helper function

– harder to reason about and test Level 3, so keep it simple

• Write code to check your invariants
– ensure the new state is valid before calling setState
– practice defensive programming

Example: To-Do List

TodoApp – State

// Represents one item in the todo list.
type Item = {
 name: string;
 completed: boolean;
};

// State of the app is the list of items and the text that the
// the user is typing into the new item field.
type TodoState = {
 items: Item[]; // existing items
 newName: string; // mirrors text in the field to add a new name
 // (need this for two reasons…)
};

TodoApp – Class

// Top-level application that lets the user pick a quarter and
// then pick classes within that quarter.
export class TodoApp extends Component<{}, TodoState> {

 constructor(props: {}) {
 super(props);
 this.state = {items: [], newName: ""};
 }

 …

TodoApp – Render

// Return a UI with all the items and elements that allow them to
// add a new item with a name of their choice.
render = (): JSX.Element => {
 return (
 <div>

 <h2>To-Do List</h2>
 {this.renderItems()}
 <p className="instructions">Check an item to mark it…</p>
 <p className="more-instructions">New item:
 <input type="text" className="new-item"

 value={this.state.newName}
 onChange={this.doNewNameChange} />
 <button type="button" className="btn btn-link"
 onClick={this.doAddClick}>Add</button>
 </p>

 </div>);
}

TodoApp – Render Items (abbreviated)

renderItems = (): JSX.Element[] => {

 const items: JSX.Element[] = [];
 for (let i = 0; i < this.state.items.length; i++) {
 if (!this.state.items[i].completed) {
 items.push(

 <div className="form-check" key={i}>
 <input className="form-check-input" type="checkbox"

 id={"check" + i} checked={false}
 onChange={evt => this.doItemClick(evt, i)} />
 <label className="form-check-label" htmlFor={"check"+i}>

 {this.state.items[i].name}
 </label>

 </div>);
 } else { … /* read-only once completed */ }
 }

 return items;
};

TodoApp – Render

// Return a UI with all the items and elements that allow them to
// add a new item with a name of their choice.
render = (): JSX.Element => {
 return (
 <div>

 <h2>To-Do List</h2>
 {this.renderItems()}
 <p className="instructions">Check an item to mark it…</p>
 <p className="more-instructions">New item:
 <input type="text" className="new-item"

 value={this.state.newName}
 onChange={this.doNewNameChange} />
 <button type="button" className="btn btn-link"
 onClick={this.doAddClick}>Add</button>
 </p>

 </div>);
}

TodoApp – Add Click

// Called when the user clicks on the button to add the new item.
doAddClick = (_: MouseEvent<HTMLButtonElement>): void => {
 // Ignore the request if the user hasn't entered a name.
 const name = this.state.newName.trim();
 if (name.length == 0)
 return;

 // Cannot mutate this.state.items! Must make a new array.
 const items = this.state.items.concat(
 [{name: name, completed: false}]);

 this.setState({items: items, newName: ""}); // clear input box
};

Event Handler Conventions

• We will use this convention for event handlers

doMyCompMyEvent

– e.g., doAddClick, doNewNameChange

• Reduces the need to explain these methods
– method name is enough to understand what it is for
– method name is the only thing you know they read

• Components should be just rendering & event handlers

component
name

event
name

TodoApp – Render

// Return a UI with all the items and elements that allow them to
// add a new item with a name of their choice.
render = (): JSX.Element => {
 return (
 <div>

 <h2>To-Do List</h2>
 {this.renderItems()}
 <p className="instructions">Check an item to mark it…</p>
 <p className="more-instructions">New item:
 <input type="text" className="new-item"

 value={this.state.newName}
 onChange={this.doNewNameChange} />
 <button type="button" className="btn btn-link"
 onClick={this.doAddClick}>Add</button>
 </p>

 </div>);
}

TodoApp – New Name Change

// Called each time the text in the new item name field is changed.
doNewNameChange = (evt: ChangeEvent<HTMLInputElement>): void => {
 this.setState({newName: evt.target.value});
}

• Most event handlers are passed an event object
– field “evt.target” stores the object that fired the event
– hence, “evt.target.value” is the text in that input box

• Make sure no data on screen would disappear on re-render
– must record the text the user typed into the field

goes into the value={..} attribute of the input box

– otherwise, render would produce an input box with no text

Other Events

• Components should be just rendering & event handlers
– our linter will enforce this

• Timers have events that fire after a given time
– call to setTimeout invokes callback after a delay

• React also includes events about its “life cycle”
– componentDidMount: UI is now on the screen
– componentDidUpdate: UI was just changed to match render
– componentWillUnmount: UI is about to go away
– will see a reason to need componentDidMount next time…

