
Servers & Routes
Kevin Zatloukal

CSE 331

Administrivia

• HW6 due today
– last topic that will be included in the midterm

• Section tomorrow will be especially useful
– will email about software setup tonight (do before class)

• No lecture or OHs on Friday (Veteran’s Day)

• Midterm next Friday
– review in section next week
– practice material on website

Servers & Routes

Client-Side JavaScript

• Code so far has run inside the browser
– webpack-dev-server handles HTTP requests
– sends back our code to the browser

• Browser executes the code of index.tsx
– calls root.render to produce the UI

index.html
index.tsx etc.

webpack-dev-server

HTTP request

Server-Side JavaScript

• Can run code in the server as well
– allows us to store data on the server instead
– “node” executes the code of index.ts

• Start writing server-side code in HW7
– will have code in both browser and server in HW8-9

HTTP request

HTTP response

our server

HTTP Terminology

• HTTP request includes
– method: GET or POST (for us)

GET is used to read data stored on the server (cacheable)
POST is used to change data stored on the server

– URL: path and query parameters
can include query parameters

– body (for POST only)
useful for sending large or non-string data with the request

• Browser issues a GET request when you type URL

server name path

HTTP Terminology

• HTTP response includes
– status code: 200 (ok), 400-99 (client error),

 or 500-99 (server error)
was the server able to respond

– content type: text/HTML or application/JSON (for us)
what sort of data did the server send back

– content
in format described by the Content Type

• Browser expects HTML to display in the page
– we will send JSON data back to our code in the browser

Custom Server

• Create a custom server as follows:

const F = (req: SafeRequest, res: SafeResponse): void => {
 …
}

const app = express();
app.get(“/foo”, F);
app.listen(8080);

– request for http://localhost:8080/foo will call F
– mapping from “/foo” to F is called a “route”
– can have as many routes as we want (with different URLs)

SafeRequest is an alias of Request<..> with proper type parameters filled in

http://localhost:8080/foo

Custom Server

• Query parameters (e.g., ?name=Fred) in SafeRequest

const F = (req: SafeRequest, res: SafeResponse): void => {
 const name: string|undefined = req.query.name;
 if (name === undefined) {
 res.status(400).send(“Missing ‘name’”);
 return;
 }
 … // name was provided
}

– set status to 400 to indicate a client error (Bad Request)
– set status to 500 to indicate a server error
– default status is 200 (OK)

Custom Server

• Query parameters (e.g., ?name=Fred) in SafeRequest

const F = (req: SafeRequest, res: SafeResponse): void => {
 const name: string|undefined = req.query.name;
 if (name === undefined) {
 res.status(400).send(“Missing ‘name’”);
 return;
 }
 res.send({message: `Hi, ${name}`});
}

– send of string returned as text/HTML
– send of record returned as application/JSON

Example App from Section 7

User types “blue” and presses “Submit”…

Server-Side JavaScript

• Apps will make sequence of requests to server

GET /new

{text: “Your fav color is?”}

our server
GET /check?answer=blue

{correct: false}

GET /check?answer=yellow

{correct: true}

“Network” Tab Shows Requests

• Shows every request to the server
– first request loads the app (as usual)
– “new” is a request to get a question
– “check?index=0&answer=blue” is a request to check answer

• Click on a request to see details…

“Network” Tab Shows Request & Response

JSON

• JavaScript Object Notation
– text description of JavaScript object
– allows strings, numbers, null, arrays, and records

no undefined and no instances of classes
no ‘..’ (single quotes), only “..”
requires quotes around keys in records

– another tree!

• Translation into string done automatically by send

res.send({index: 0, text: ’What is your …?’});

Testing Server-Side TypeScript

• A route calls an ordinary function

• Testing is the same as on the client side
– write unit tests in X_test.ts files
– run then using npm run test

• Libraries help set up Request & Response for tests
– can check the status returned was correct

e.g., 200 or 400

– can check the response body was correct
e.g., “Missing ‘name’” or {message: “Hi, Fred”}

Testing Server-Side TypeScript

• A route calls an ordinary function

• Client- and server-side code is made up of functions
– server functions handles requests for specific URLs
– client functions draw data, create requests, etc.
– test (and code review) each one

• Key Point: unit test each function thoroughly
– often hard to figure which part caused the failure

failure in the client could be due to a bug in the server

– debugging that will be painful
– need a higher standard of correctness in a larger app

much easier to debug failing tests than errors in the app

Functions with Mutations

Specifying Functions that Mutate

• Our functions so far have not mutated anything
makes things much simpler!

• Cannot yet write a spec for sorting an array
– could return a sorted version of the array
– but cannot say that we change the array to be sorted

• Need some new tags to describe that…

Specifying Functions that Mutate

• By default, no parameters are mutated
– must explicitly say that mutation is possible (default not)

/**
 * Reorders A so the numbers are in increasing order
 * @param A array of numbers to be sorted
 * @modifies A
 * @effects A contains the same numbers but now in
 * increasing order
 */
const quickSort = (A: number[]): void => { .. };

– anything that might be changed is listed in @modifies
not a promise to modify it — A could already be sorted!
a shorter modifies list is a stronger specification

Specifying Functions that Mutate

• By default, no parameters are mutated
– must explicitly say that mutation is possible (default not)

/**
 * Reorders A so the numbers are in increasing order
 * @param A array of numbers to be sorted
 * @modifies A
 * @effects A contains the same numbers but now in
 * increasing order
 */
const quickSort = (A: number[]): void => { .. };

– @effects gives promises about result after mutation
like @returns but for mutated values, not return value
this returns void, so no @returns

Mutating Arrays

• Assigning to array elements changes known state

{{	A[j	–	1]	<	A[j]	for	any	1	≤	j	≤	5	}}
A[0] = 100;

{{	A[j	–	1]	<	A[j]	for	any	2	≤	j	≤	5	and	A[0]	=	100	}}

• Can add to the end of an array

A.push(100);

{{	A	=	A0	⧺	[100]	}}

• Can remove from the end of an array

A.pop();

{{	A	=	A0[0	..	n	–	2]	}} A has one fewer element than before

Example Mutating Function

• Reorder an array so that
– negative numbers come first, then zeros, then positives

(not necessarily fully sorted)

/**
 * Reorders A into negatives, then 0s, then positive
 * @modifies A
 * @effects leaves same numbers in A but with
 * A[j] < 0 for 0 <= j < i
 * A[j] = 0 for i <= j < k
 * A[j] > 0 for k <= j < n
 * @returns the indexes (i, k) above
 */
const sortPosNeg = (A: number[]): [number,number] =>

Example: Sorting Negative, Zero, Positive

// @effects leaves same numbers in A but with
// A[j] < 0 for 0 <= j < i
// A[j] = 0 for i <= j < k
// A[j] > 0 for k <= j < n

Let’s implement this…
– what was our heuristic for guessing an invariant?
– weaken the postcondition

< 0 = 0 > 0

i k n0

Example: Sorting Negative, Zero, Positive

How should we weaken this for the invariant?
– needs allow elements with unknown values

initially, we don’t know anything about the array values

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0 ?

Example: Sorting Negative, Zero, Positive

Our Invariant:

	 	 	 A[ℓ]	<	0	for	any	0	≤	ℓ	<	i
	 	 	 A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
	 	 	 (no	constraints	on	A[ℓ]	for	j	≤	ℓ	<	k)
	 	 	 A[ℓ]	>	0	for	any	k	≤	ℓ	<	n

< 0 = 0 > 0

i k n0

?

j

Example: Sorting Negative, Zero, Positive

• Let’s try figuring out the code (problem type 2)
– on homework, this would be type 3 (check correctness)

• Figure out the code for
– how to initialize
– when to exit
– loop body

< 0 = 0 > 0

i k n0

?

j

?

Example: Sorting Negative, Zero, Positive

• Will have variables i, j, and k with i	≤	j	<	k

• How do we set these to make it true initially?
– we start out not knowing anything about the array values
– set i	=	j	=	0 and k	=	n

< 0 = 0 > 0

i k n0

?

j

i k
n0

j

Example: Sorting Negative, Zero, Positive

• Set i	=	j	=	0 and k	=	n to make this hold initially

• When do we exit?
– purple is empty if j	=	k

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i
k

n0 j

Sort Positive, Zero, Negative

let i: number = 0;
let j: number = 0;
let k: number = A.length;
{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n}}
while (j < k) {
 ...
}

{{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
					A[ℓ]	>	0	for	any	j	≤	ℓ	<	n	}}
return [i, j];

Example: Sorting Negative, Zero, Positive

• How do we make progress?
– try to increase j by 1 or decrease k by 1

• Look at A[j] and figure out where it goes

• What to do depends on A[j]
– could be <	0, =	0, or >	0

< 0 = 0 > 0

i k n0

?

j

Example: Sorting Negative, Zero, Positive

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

Set j	=	j0	+	1

Swap A[i] and A[j]
Set i	=	i0	+	1
and j	=	j0	+	1

Swap A[j] and A[k–1]
Set k	=	k0	–	1

Sort Positive, Zero, Negative

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	}}
while (j !== k) {
 if (A[j] === 0) {
 j = j + 1;
 } else if (A[j] < 0) {
 swap(A, i, j);
 i = i + 1;

 j = j + 1;
 } else {
 swap(A, j, k);

 k = k – 1;
 }

}

Combine forward and backward
reasoning to double check correctness.

Sort Positive, Zero, Negative

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	}}
while (j !== k) {
 …

 } else if (A[j] < 0) {
 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	and	A[j]	<	0	}}
 swap(A, i, j);

 i = i + 1;
 j = j + 1;

 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	}}
 }
 …

Sort Positive, Zero, Negative

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	}}
while (j !== k) {
 …

 } else if (A[j] < 0) {
 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	A[j]	<	0	}}
 swap(A, i, j);

 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i+1	and	A[ℓ]	=	0	for	any	i+1	≤	ℓ	<	j+1
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i+1	≤	j+1	≤	k	≤	n	}}
 i = i + 1;

 j = j + 1;

 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	}}
 }

 …

Sort Positive, Zero, Negative

{{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
					A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	and	A[j]	<	0	}}
swap(A, i, j);

{{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i+1	and	A[ℓ]	=	0	for	any	i+1	≤	ℓ	<	j+1
					A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i+1	≤	j+1	≤	k	≤	n	}}

Easiest to stop here since this is a function call. (Need to use its spec.)

Step 1: What facts are new in the bottom assertion?

New facts are A[i]	<	0				and A[j]	=	0

Initially have A[i]	=	0				and A[j]	<	0

Swapping them gives what we want.

Other 2 cases are similar… (Exercise)

