CSE 331

Arrays
Kevin Zatloukal

Recall: Turning Recursion Into a Loop

- Saw templates for structural recursion on
- natural numbers
- lists
straightforward
harder
- Special case for tail recursion on
- lists
straightforward

Processing Lists with Loops

- Hard to process lists with loops
- only have easy access to the last element added natural processing would start from the other end
- must reverse the list to work "bottom up" that requires an additional $O(n)$ space
- There is an easier way to fix this...
- switch data structures
- use one that lets us access either end easily
"Lists are the original data structure for functional programming, just as arrays are the original data structure of imperative programming"

Ravi Sethi

Array Accesses

- Easily access both $A[0]$ and $A[n-1]$, where $n=$ A.length
- bottom-up loops are now easy
- "With great power, comes great responsibility"
- the Peter Parker Principle
- Whenever we write "A[j]", we must check $0 \leq \mathrm{j}<\mathrm{n}$
- new bug just dropped!
with list, we only need to worry about nil and non-nil
once we know L is non-nil, we know L.hd exists
- TypeScript will not help us with this!
type checker does catch "could be nil" bugs, but not this

Array Literals

- Write array values in math like this:

$$
\mathrm{A}:=[1,2,3] \quad\left(\text { with } \mathrm{A}: \mathrm{Array}_{\mathbb{Z}}\right)
$$

- the empty array is "[]"
- Array literal syntax is the same in TypeScript:

```
const A: Array<number> = [1, 2, 3];
const B: number[] = [4, 5];
```

- can write $\mathrm{Array}_{\mathbb{Z}}$ as "Array<number>" or "number []"

Array Concatenation

- Define the operation "\#" as array concatenation
- makes clear the arguments are arrays, not numbers
- The following properties hold for any arrays $\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
\begin{aligned}
& A+[]=A=[]+A \\
& A+(B+C)=(A+B)+C
\end{aligned}
$$

("identity")
("associativity")

- we will use these facts without explanation in calculations
- second line says parentheses don't matter, so we will write A \# B \# C and not say where the (..) go

Array Concatenation Math

- Same properties hold for lists

$$
\begin{array}{ll}
{[]+A=A} & \operatorname{concat}(\text { nil, } L)=L \\
A+[]=A & \operatorname{concat}(L, \operatorname{nil})=L \\
A+(B+C)=(A+B)+C & \\
& =\operatorname{concat}(A, \operatorname{concat}(B, C)) \\
& =\operatorname{concat}(\operatorname{concat}(A, B), C)
\end{array}
$$

- we required explanation of these facts for lists
- but we will not require explanation of these facts for arrays
(trying to reason more quickly, now that we have more practice)

Defining Functions on Arrays

- Can still define functions recursively

func count $([], x)$	$:=0$	for any $x: \mathbb{Z}$			
$\operatorname{count}(A+[y], x)$	$:=1+\operatorname{count}(A, x)$	if $x=y$			
:---:	:---:				
$\operatorname{count}(A+[y], x)$	$:=\operatorname{count}(A, x)$				

- could write patterns with "[y] \# A" instead

Subarrays

- Often useful to talk about part of an array (subarray)
- define the following notation

$$
A[i . . j]=[A[i], A[i+1], . . ., A[j]]
$$

- note that this includes $\mathrm{A}[\mathrm{j}]$
(some functions exclude the right end; we will include it)

Subarrays

$$
A[i . . j]=[A[i], A[i+1], \ldots, A[j]]
$$

- Define this formally as follows

$$
\begin{array}{rll}
\text { func } A[i . . j] & :=[] & \text { if } j<i \\
A[i . . j] & :=A[i . . j-1]+[A[j]] & \text { if } i \leq j
\end{array}
$$

- second case needs $0 \leq \mathrm{j}<\mathrm{n}$ for this to make sense
$A[i \ldots j]$ is undefined if $i \leq j$ and $(i<0$ or $n \leq j)$
- note that $A[0 . .-1]=[]$ since $-1<0$
"Isn't -1 an array out of bounds error?"
In code, yes - In math, no
(the definition says this is an empty array)

Subarray Math

$$
\begin{array}{rll}
\text { func } A[i . . j] & :=[] & \text { if } j<i \\
A[i . . j] & :=A[i . . j-1]+[A[j]] & \text { if } 0 \leq i \leq j<A . l e n g t h \\
A[i . . j] & :=\text { undefined } & \text { if } i \leq j \text { and }(i<0 \text { or A.length } \leq j)
\end{array}
$$

- Some useful facts

$$
\begin{aligned}
\mathrm{A}= & \mathrm{A}[0 \ldots \mathrm{n}-1] \quad(=[\mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[\mathrm{n}-1]]) \\
& \text { where } \mathrm{n}=\text { A.length }
\end{aligned}
$$

- the subarray from 0 to $n-1$ is the entire array

$$
A[\mathrm{i} . . \mathrm{j}]=\mathrm{A}[\mathrm{i} . . \mathrm{k}]+\mathrm{A}[\mathrm{k}+1 . . \mathrm{j}]
$$

- holds for any $\mathrm{i}, \mathrm{j}, \mathrm{k}: \mathbb{N}$ satisfying $\mathrm{i}-1 \leq \mathrm{k} \leq \mathrm{j}$ (and $0 \leq \mathrm{i} \leq \mathrm{j}<\mathrm{n}$)
- we will use these without explanation

TypeScript Arrays

- Translating math to TypeScript
Math TypeScript

$$
\begin{array}{ll}
A+B & \text { A.concat (B) } \\
A[i . . j] & \text { A.slice }(i, j+1)
\end{array}
$$

- JavaScript's A.slice (i, j) does not include A[j], so we need to increase j by one
- Note: array out of bounds does not throw Error
- returns undefined (hope you like debugging!)

Facts About Arrays

- "With great power, comes great responsibility"
- Since we can easily access any A[j], may need to keep track of facts about it
- may need facts about every element in the array
applies to preconditions, postconditions, and intermediate assertions
- We can write facts about several elements at once:
- this says that elements at indexes 2 .. 10 are non-negative

$$
0 \leq A[j] \text { for any } 2 \leq \mathrm{j} \leq 10
$$

- shorthand for 9 facts ($0 \leq \mathrm{A}[2], \ldots, 0 \leq \mathrm{A}[10]$)

Finding an Element in an Array

- Can search for an element in an array as follows

func contains $([], x)$	$:=F$	for any ...	
$\operatorname{contains}(A+[y], x)$	$:=T$	if $x=y$	for any \ldots
$\operatorname{contains}(A+[y], x)$	$:=$ contains (A, x)	if $x \neq y$	for any ...

- Searches through the array in linear time
- did the same on lists
- Can search more quickly if the list is sorted
- precondition is $\mathrm{A}[0] \leq \mathrm{A}[1] \leq \ldots \leq \mathrm{A}[\mathrm{n}-1] \quad$ (informal)
- write this formally as

$$
A[j] \leq A[j+1] \text { for any } 0 \leq j \leq n-2
$$

Loops with Arrays

Sum of an Array

$$
\begin{aligned}
& \text { func } \operatorname{sum}([]) \quad:=0 \\
& \quad \operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: \operatorname{Array}_{\mathbb{Z}}
\end{aligned}
$$

- Could translate this directly into a recursive function
- that would be level 0
- Do this instead with a loop. Loop idea...
- use the "bottom up" approach
- start from [] and work up to all of A
- at any point, we have sum ($\mathrm{A}[0$.. $\mathrm{j}-1]$) for some index j

I will add one extra fact we also need

Sum of an Array

$$
\begin{array}{rlr}
\text { func sum }([]) & :=0 \\
\operatorname{sum}(A+[y]) & :=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: A r r a y_{\mathbb{Z}}
\end{array}
$$

- Loop implementation:

```
let j: number = 0;
let s: number = 0;
{{Inv: s = sum(A[0 .. j - 1]) and 0 \leq j \leq A.length }}
while (j < A.length) {
    s = s + A[j];
    j = j + 1; could write"j !== A.length"
}
{{s=\operatorname{sum}(A) }}
return s;
```

could write " $j!==A$. length"
but this is normal

Sum of an Array

$$
\begin{aligned}
\text { func } \operatorname{sum}([]) & :=0 \\
\operatorname{sum}(A+[y]) & :=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: \operatorname{Array}_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

```
let j: number = 0;
let s: number = 0;
\nabla {{j = 0 and s=0}}
{{Inv: s = sum(A[0 .. j - 1]) and 0 \leq j { A.length }}
while (j < A.length) {
    S = S + A[j];
    j = j + 1;
}
{{s=\operatorname{sum}(A) }}
return s;
```


Sum of an Array

$$
\text { func sum([]) } \quad:=0
$$

$$
\operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: A r r a y_{\mathbb{Z}}
$$

- Loop implementation:

```
let j: number = 0;
let s: number = 0;
\nabla {{j = 0 and s=0}}
{{Inv: s = sum(A[0 ..j - 1]) and 0\leqj m A.length }}
while (j < A.length) {
    S = S + A[j];
    j = j + 1;
}
{{s=\operatorname{sum(A) }}}
return s;
s = 0
    = sum([]) def of sum
    = sum(A[0 .. -1])
    = sum(A[0 .. j - 1]) since j = 0
j = 0
    \leqA.length
```


Sum of an Array

$$
\begin{aligned}
& \text { func } \operatorname{sum}([]) \quad:=0 \\
& \quad \operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: \operatorname{Array}_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

```
let j: number = 0;
let s: number = 0;
```



```
while (j < A.length) {
    s = s + A[j];
    j = j + 1;
}
{{s=\operatorname{sum}(A[0..j - 1]) and j = A.length }}
{{s=\operatorname{sum}(A) }}
return s;
```


Sum of an Array

$$
\begin{aligned}
\text { func } \operatorname{sum}([]) & :=0 \\
\operatorname{sum}(A+[y]) & :=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: \operatorname{Array}_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

```
let j: number = 0;
let s: number = 0;
{{Inv: s = sum(A[0 .. j - 1]) and 0 \leq j \leq A.length }}
while (j < A.length) {
    s = s + A[j];
    j = j + 1;
}
{{s=\operatorname{sum}(A[0..j - 1]) and j = A.length }} ] s = sum(A[0 .. j - 1])
{{s=\operatorname{sum}(A) }}
return s;
```

```
    = sum(A[0 .. A.length - 1])
```

 = sum(A[0 .. A.length - 1])
 = sum(A)
    ```
    = sum(A)
```


Sum of an Array

$$
\begin{aligned}
& \text { func } \operatorname{sum}([]) \quad:=0 \\
& \quad \operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: \operatorname{Array}_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

```
let j: number = 0;
let s: number = 0;
```



```
while (j < A.length) {
    {{s=\operatorname{sum}(A[0 ..j - 1]) and 0\leqj< A.length }}
    s = S + A[j];
    j = j + 1;
    {{s=\operatorname{sum}(A[0 ..j - 1]) and 0\leqj\leqA.length }}
}
{{s=sum(A) }}
return s;
```


Sum of an Array

$$
\begin{aligned}
& \text { func } \operatorname{sum}([]) \quad:=0 \\
& \quad \operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: A r r a y_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

```
while (j < A.length) {
    {{s=\operatorname{sum(A[0 ..j - 1]) and 0 \leq j < A.length }}}
    s = s + A[j];
    {{s-A[j] = sum(A[0 .. j - 1]) and 0 \leq j < A.length }}
    j = j + 1;
    {{s=\operatorname{sum}(A[0 ..j-1]) and 0\leqj\leq A.length }}
}
```


Sum of an Array

$$
\begin{aligned}
& \text { func } \operatorname{sum}([]) \quad:=0 \\
& \quad \operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: A r r a y_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

```
while (j < A.length) {
```



```
    s = s + A[j];
    {{s-A[j] = sum(A[0 ..j - 1]) and 0 \leqj < A.length }}
    j = j + 1;
    {{s-A[j-1]=\operatorname{sum}(A[0..j-2]) and 0\leqj-1<A.length }}
    {{s=\operatorname{sum}(A[0 ..j-1]) and 0\leqj\leq A.length }}
}
```


Sum of an Array

$$
\begin{aligned}
& \text { func } \operatorname{sum}([]) \quad:=0 \\
& \quad \operatorname{sum}(A+[y]):=\operatorname{sum}(A)+y \quad \text { for any } y: \mathbb{Z} \text { and } A: A r r a y_{\mathbb{Z}}
\end{aligned}
$$

- Loop implementation:

$$
\begin{aligned}
& \text { while (j < A.length) \{ } \\
& \{\{\mathrm{s}=\operatorname{sum}(\mathrm{A}[0 . . \mathrm{j}-1]) \text { and } 0 \leq \mathrm{j}<\text { A.length }\}\} \\
& s=s+A[j] ; \\
& \{\{\mathrm{s}-\mathrm{A}[\mathrm{j}]=\operatorname{sum}(\mathrm{A}[0 . . \mathrm{j}-1]) \text { and } 0 \leq \mathrm{j}<\text { A.length }\}\} \\
& j=j+1 ; \\
& \{\{s-A[j-1]=\operatorname{sum}(A[0 . . j-2]) \text { and } 0 \leq j-1<A \text {.length }\}\} \\
& \{\{\mathrm{s}=\operatorname{sum}(\mathrm{A}[0 . . \mathrm{j}-1]) \text { and } 0 \leq \mathrm{j} \leq \text { A.length }\}\} \\
& s=\operatorname{sum}(A[0 . . j-2])+A[j-1] \quad \text { since } s-A[j-1]=\operatorname{sum}(. .) \\
& =\operatorname{sum}(A[0 . . j-2]+[A[j-1]]) \text { def of sum } \\
& =\operatorname{sum}(A[0 . . j-1])
\end{aligned}
$$

Linear Search of an Array

| func contains $([], x)$ | $:=F$ | |
| ---: | :--- | ---: |
| $\operatorname{contains}(A+[y], x)$ | $:=T$ | if $x=y$ |
| $\operatorname{contains}(A+[y], x)$ | $:=\operatorname{contains}(A, x)$ | if $x \neq y$ |

- Could translate this directly into a recursive function
- that would be level 0
- Do this instead with a loop. Loop idea...
- use the "bottom up" template
- start from [] and work up to all of A
- but we can stop immediately if we find x
contains returns true in that case
- otherwise, we have contains $(A[0 . . j-1], x)=F$ for some j

Linear Search of an Array

$$
\begin{array}{rll}
\text { func contains([], x) } & :=\mathrm{F} & \\
\operatorname{contains}(\mathrm{~A}+[\mathrm{y}], \mathrm{x}) & :=\mathrm{T} & \text { if } \mathrm{x}=\mathrm{y} \\
\operatorname{contains(A+[y],x)} & :=\operatorname{contains(A,x)} & \text { if } x \neq y
\end{array}
$$

- Loop implementation:

```
let j: number = 0;
{{ Inv: contains(A[0 .. j-1], x) = F and 0 \leq j \leq A.length }}
while (j < A.length) {
        if (A[j] === x)
            {{ contains(A,x)=T }}
            return true;
    j = j + 1;
}
{{\operatorname{contains(A, x) = F }}}
return false;
```


Linear Search of an Array

```
func contains([], x) \(\quad:=\mathrm{F}\)
    contains \((A+[y], x) \quad:=T \quad\) if \(x=y\)
    contains \((A+[y], x) \quad:=\operatorname{contains}(A, x) \quad\) if \(x \neq y\)
```

- Loop implementation:

```
\(\downarrow\) let \(j:\) number \(=0\);
\(\{\{j=0\}\}\)
\(\{\{\) Inv: contains \((A[0 . . j-1], x)=F\) and \(0 \leq j \leq\) A.length \(\}\}]\)
while (j<A.length) \{
        if (A[j] === x)
            return true;
        \(j=j+1 ;\)
    \}
    return false;
```


Linear Search of an Array

$$
\begin{array}{rll}
\text { func contains([], x) } & :=\mathrm{F} & \\
\operatorname{contains(A+[y],x)} & :=\mathrm{T} & \text { if } \mathrm{x}=\mathrm{y} \\
\operatorname{contains(A+[y],x)} & :=\operatorname{contains(A,x)} & \text { if } x \neq y
\end{array}
$$

- Loop implementation:

```
\(\downarrow\) let \(j:\) number \(=0\);
    \(\{\{j=0\}\}\)
    \(\{\{\) Inv: contains \((A[0 . . j-1], x)=F\) and \(0 \leq j \leq\) A.length \(\}\}\)
    while (j<A.length) \{
        if (A[j] === \(x\) )
            return true; contains (A[0..j-1], x)
        \(j=j+1 ; \quad=\operatorname{contains}(A[0 . .-1], x) \quad\) since \(j=0\)
    \}
    return false;
    \(=\) contains ([], x)
    \(=\mathrm{F} \quad\) def of contains
\(0 \leq 0=\mathrm{j} \quad\) and \(\quad \mathrm{j}=0 \leq\) A.length
```


Linear Search of an Array

```
func contains([],x) := F
    contains(A + [y],x) := T if x=y
    contains(A + [y], x) := contains(A, x) if x\not=y
```

- Loop implementation:

```
let j: number = 0;
{{ Inv: contains(A[0 .. j-1], x) = F and 0 \leq j s A.length }}
while (j < A.length) {
        if (A[j] === x)
            return true;
        j = j + 1;
}
{{ contains(A[0 .. j-1], x) = F and j = A.length }}
{{ contains(A,x)=F }}
return false;
```


Linear Search of an Array

$$
\begin{array}{rll}
\text { func contains([], x) } & :=\mathrm{F} & \\
\operatorname{contains(A+[y],x)} & :=\mathrm{T} & \text { if } \mathrm{x}=\mathrm{y} \\
\operatorname{contains(A+[y],x)} & :=\operatorname{contains(A,x)} & \text { if } x \neq y
\end{array}
$$

- Loop implementation:

```
let j: number = 0;
{{ Inv: contains(A[0 .. j-1], x) = F and 0 \leq j s A.length }}
while (j < A.length) {
        if (A[j] === x)
            F = contains(A[0 .. j-1], x)
            return true; = contains(A[0.. A.length - 1],x) since j = ..
            j = j + 1; = contains(A, x)
}
{{ contains(A[0 .. j-1], x ) = F and j = A.length }}
{{\operatorname{contains(A, x) = F }}}
return false;
```


Linear Search of an Array

```
func contains([],x) := F
    contains(A + [y],x) := T if x=y
    contains(A + [y], x) := contains(A, x) if x\not=y
```

- Loop implementation:

```
while (j < A.length) {
    {{ contains(A[0 .. j-1], x) = F and 0 \leq j < A.length }}
    if (A[j] === x)
            {{contains(A, x) = T }}
            return true;
    j = j + 1;
    {{ contains(A[0 .. j-1], x) = F and 0 \leq j \leq A.length }}
}
return false;
```


Linear Search of an Array

```
func contains \(([], x) \quad:=\mathrm{F}\)
    contains \((A+[y], x) \quad:=T \quad\) if \(x=y\)
    contains(A + [y], x) \(\quad:=\operatorname{contains(A,~x)~if~} x \neq y\)
```

- Loop implementation:

```
\(\{\{\) contains \((A[0 . . j-1], x)=F\) and \(0 \leq j<A\).length \(\}\}\)
if (A[j] === x) \{
    \(\{\{\) contains \((\mathrm{A}, \mathrm{x})=\mathrm{T}\}\}\)
    return true;
\} else \{
\}
j = j + 1;
\(\{\{\) contains \((A[0\).. \(j-1], x)=F\) and \(0 \leq j \leq\) A.length \(\}\}\)
```


Linear Search of an Array

```
func contains([], x) \(\quad:=\mathrm{F}\)
    contains \((A+[y], x) \quad:=T \quad\) if \(x=y\)
    contains(A + [y], x) \(\quad:=\operatorname{contains(A,~x)~if~} x \neq y\)
```

- Loop implementation:

```
    {{ contains(A[0 .. j-1], x) = F and 0 \leq j < A.length }}
    if (A[j] === x) {
    {{ contains(A[0 ..j-1],x)=F and 0\leqj<A.length and A[j] = x }}
    {{ contains(A, x) = T }}
    return true;
} else {
```


Linear Search of an Array

| func contains $([], x)$ | $:=F$ | |
| :---: | :--- | :--- |
| $\operatorname{contains}(A+[y], x)$ | $:=T$ | if $x=y$ |
| $\operatorname{contains}(A+[y], x)$ | $:=\operatorname{contains}(A, x)$ | if $x \neq y$ |

- Loop implementation:

```
    \(\{\{\) contains \((\mathrm{A}[0 \mathrm{oj} \mathrm{j}-1], \mathrm{x})=\mathrm{F}\) and \(0 \leq \mathrm{j}<\) A.length \(\}\}\)
    if (A[j] === x) \{
    \(\rightarrow\{\{\) contains \((A[0 . . j-1], x)=F\) and \(0 \leq j<A\).length and \(A[j]=x\}\}\)
    \(\{\{\) contains \((\mathrm{A}, \mathrm{x})=\mathrm{T}\}\}\)
    return true;
\} else \{
```

```
contains(A[0 .. j], x)
```

contains(A[0 .. j], x)
$=$ contains $(A[0 . . j-1]+[A[j]], x)$
$=$ contains $(A[0 . . j-1]+[A[j]], x)$
$=\mathrm{T}$
$=\mathrm{T}$
since $A[j]=x$

```
since \(A[j]=x\)
```

Can now prove by induction that contains $(\mathrm{A}, \mathrm{x})=\mathrm{T}$

Linear Search of an Array

| func contains $([], x)$ | $:=\mathrm{F}$ | |
| :---: | :--- | :--- |
| $\operatorname{contains}(\mathrm{A}+[\mathrm{y}], \mathrm{x})$ | $:=\mathrm{T}$ | if $\mathrm{x}=\mathrm{y}$ |
| $\operatorname{contains}(\mathrm{A}+[\mathrm{y}], \mathrm{x})$ | $:=\operatorname{contains}(\mathrm{A}, \mathrm{x})$ | if $\mathrm{x} \neq \mathrm{y}$ |

- Loop implementation:

```
    \(\{\{\) contains \((A[0 . . j-1], x)=F\) and \(j<A\).length \(\}\}\)
    if (A[j] === x) \{
        return true;
    \} else \{
    \(\rightarrow\{\{\) contains \((A[0 . . j-1], x)=F\) and \(0 \leq j<A\).length and \(A[j] \neq x\}\}\)
    \(\{\{\) contains \((A[0 . . j], x)=F\) and \(0 \leq j+1 \leq\) A.length \(\}\}\)
    \}
    \(\{\{\) contains \((A[0 . . j], x)=F\) and \(0 \leq j+1 \leq\) A.length \(\}\}\)
    j = j + 1;
    \(\{\{\) contains \((A[0 . . j-1], x)=F\) and \(0 \leq j \leq A\).length \(\}\}\)
```


Linear Search of an Array

```
func contains([], x) \(\quad:=\mathrm{F}\)
    contains \((A+[y], x) \quad:=T \quad\) if \(x=y\)
    contains(A + [y], x) \(\quad:=\operatorname{contains(A,~x)~if~} x \neq y\)
```

- Loop implementation:

```
{{ contains(A[0 .. j-1], x) = F and j < A.length }}
if (A[j] === x) {
    return true;
    } else {
    {{ contains(A[0 .. j-1], x) = F and 0 \leqj < A.length and A[j] #= x }}
    {{ contains(A[0 .. j], x) = F and 0 \leq j+1 \leq A.length }}
}
```


Linear Search of an Array

| func contains $([], x)$ | $:=F$ | |
| :---: | :--- | :--- |
| $\operatorname{contains}(A+[y], x)$ | $:=T$ | if $x=y$ |
| $\operatorname{contains}(A+[y], x)$ | $:=\operatorname{contains}(A, x)$ | if $x \neq y$ |

- Loop implementation:

```
\(\{\{\) contains \((\mathrm{A}[0 . . \mathrm{j}-1], \mathrm{x})=\mathrm{F}\) and \(\mathrm{j}<\mathrm{A}\).length \(\}\}\)
if (A[j] === x) \{
    return true;
\} else \{
    \(\{\{\operatorname{contains}(A[0 . . j-1], x)=F\) and \(0 \leq j<A\).length and \(A[j] \neq x\}\}\)
    \(\{\{\) contains \((\mathrm{A}[0 . . \mathrm{j}], \mathrm{x})=\mathrm{F}\) and \(0 \leq \mathrm{j}+1 \leq\) A.length \(\}\}\)
\}
```

```
F = contains(A[0 .. j-1], x)
```

F = contains(A[0 .. j-1], x)
= contains(A[0 .. j -1] \# [A[j]],x) def of contains (since A[j] = x)
= contains(A[0 .. j -1] \# [A[j]],x) def of contains (since A[j] = x)
= contains(A[0 .. j], x)

```
    = contains(A[0 .. j], x)
```

