CSE 331

Loops \& Recursion

Kevin Zatloukal

Administrivia

- Posted updated notes on testing
- 0-1-many used for loops also
- count number of times through the loop
- Posted notes on today's topic...

Checking Correctness with Loop Invariants

```
{{P }}
{{ Inv: I }}
while (cond) {
    S
}
{{Q }}
```

Formally, invariant split this into three Hoare triples:

1. $\{\{P\}\}\{\{I\}\}$
2. $\{\{$ I and cond $\}\} \mathbf{S}\{\{I\}\}$
3. $\{\{I$ and not cond $\}\}\{\{Q\}\}$

I holds initially
S preserves I
Q holds when loop exits

Recall: Example Loop Correctness

- Recursive function to calculate $1+2+\ldots+n$

```
func sum-to(0) :=0
    sum-to(n+1):= (n+1)+ sum-to(n) for any n:\mathbb{N}
```

- This loop claims to calculate it as well

```
{{ }}
let i: number = 0;
let s: number = 0;
{{ Inv: s = sum-to(i) }}
while (i != n) {
    i = i + 1;
    s = s + i;
}
{{s=sum-to(n) }}
```


Example Loop Correctness

- Recursive function to calculate $1+2+\ldots+n$

```
func sum-to(0) := 0
    sum-to(n+1):=(n+1)+ sum-to(n) for any n : N
```

- This loop claims to calculate it as well

```
\{ \(\}\) \}
let i: number \(=0\);
let \(s:\) number \(=0\);
\(\{\{i=0\) and \(s=0\}\}\)
\(\{\{\) Inv: \(\mathrm{s}=\) sum-to(i) \(\}\}\)
sum-to(i)
    \(=\operatorname{sum}-\operatorname{to}(0) \quad\) since \(\mathrm{i}=0\)
while (i ! = n) \{
\(=0\)
def of sum-to
```


Example Loop Correctness

- Recursive function to calculate $1+2+\ldots+n$

```
func sum-to(0) :=0
    sum-to(n+1):=(n+1)+ sum-to(n) for any n : N
```

- This loop claims to calculate it as well

```
{{ Inv: s = sum-to(i) }}
while (i != n) {
    {{s=sum-to(i) and i\not=n n}
    i = i + 1;
    s = s + i;
    {{s=sum-to(i) }}
}
```


Example Loop Correctness

- Recursive function to calculate $1+2+\ldots+n$

```
func sum-to(0) :=0
    sum-to(n+1):= (n+1)+ sum-to(n) for any n:\mathbb{N}
```

- This loop claims to calculate it as well

```
{{Inv: s = sum-to(i) }}
while (i != n) {
    {{s=sum-to(i) and i\not= n }}
    i = i + 1;
\downarrow {{s=sum-to(i-1) and i-1 # n }}
    s = s + i;
    {{s=sum-to(i) }}
}
```


Example Loop Correctness

- Recursive function to calculate $1+2+\ldots+n$

```
func sum-to(0) := 0
    sum-to(n+1):= (n+1)+ sum-to(n) for any n:\mathbb{N}
```

- This loop claims to calculate it as well

```
{{Inv: s = sum-to(i) }}
while (i != n) {
    {{s=sum-to(i) and i}\not=n\mp@code{n}
    i = i + 1;
    {{s=sum-to(i-1) and i-1 # n }}
    s = s + i;
    {{s-i = sum-to(i-1) and i-1 # n }}
    {{s=sum-to(i) }}
}
```


Example Loop Correctness

- Recursive function to calculate $1+2+\ldots+n$

```
func sum-to(0) :=0
    sum-to(n+1):=(n+1)+ sum-to(n) for any n : N
```

- This loop claims to calculate it as well

```
{{ Inv: s = sum-to(i) }}
while (i != n) {
    i = i + 1;
    s = s + i;
}
{{s=sum-to(i) and i = n }} ] sum-to(n)
{{s=sum-to(n) }} = sum-to(i)
    since i = n
    =s since s = sum-to(i)
```


Loops \& Recursion

Loops and Recursion

- To check a loop, we need a loop invariant
- Where does this come from?
- part of the algorithm idea / design
see 421 for more discussion
- Inv and the progress step formalize the algorithm idea
most programmers can easily formalize an English description
(very tricky loops are the exception to this)
- Today, we'll focus on converting recursion into a loop
- HW6 will fit these patterns
- (more loops later)

Example Loop Correctness

- Recursive function to calculate n^{2} without multiplying

```
func square(0) :=0
    square(n+1):= square(n)+2n+1 for any n : N
```

- We already proved that this calculates n^{2}
- we can implement it directly with recursion
- Let's try writing it with a loop instead...

Example Loop Correctness

$$
\begin{aligned}
\text { func square }(0) & :=0 \\
\text { square }(n+1) & :=\operatorname{square}(n)+2 n+1 \quad \text { for any } n: \mathbb{N}
\end{aligned}
$$

- Loop idea for calculating square(n):
- calculate $\mathrm{i}=0,1,2, \ldots, \mathrm{n}$
- keep track of square(i) in "s" as we go along

$i=$	0	1	2	\ldots	n
$s=$	0	1	4	\ldots	n^{2}

- Formalize that idea in the loop invariant
along with the fact that we make progress by advancing ito i+1 each step

Example Loop Correctness

func square(0) $\quad:=0$

$$
\text { square }(\mathrm{n}+1):=\operatorname{square}(\mathrm{n})+2 \mathrm{n}+1 \quad \text { for any } \mathrm{n}: \mathbb{N}
$$

- Loop implementation

```
let i: number = 0;
let s: number = 0;
{{ Inv: s = square(i) }}
while (i != n) {
    s = s + i + i + 1;
    i = i + 1; i starts at 0 and increases to n
}
return s;
```

Loop invariant says how i and s relate s holds square(i), whatever i
i starts at 0 and increases to n

Example Loop Correctness

func square(0) $\quad:=0$

$$
\text { square }(\mathrm{n}+1):=\operatorname{square}(\mathrm{n})+2 \mathrm{n}+1 \quad \text { for any } \mathrm{n}: \mathbb{N}
$$

- Loop implementation

```
let i: number = 0;
let s: number = 0;
{{ Inv: s = square(i) }}
while (i != n) {
    s=s + i + i + 1;
    i = i + 1;
}
{{s=square(i) and i = n }}
{{s=square(n) }}
return s;
square(n)
since i = n
since s = square(i)
```


Example Loop Correctness

func square(0) $\quad:=0$

$$
\text { square }(\mathrm{n}+1):=\operatorname{square}(\mathrm{n})+2 \mathrm{n}+1 \quad \text { for any } \mathrm{n}: \mathbb{N}
$$

- Loop implementation

```
{{}}
let i: number = 0;
let s: number = 0;
{{i=0 and s=0}}
{{ Inv: s = square(i) }}
while (i != n) {
    s=s + i + i + 1;
    i = i + 1;
}
return s;
```


Example Loop Correctness

func square(0) $\quad:=0$

$$
\operatorname{square}(\mathrm{n}+1):=\operatorname{square}(\mathrm{n})+2 \mathrm{n}+1 \quad \text { for any } \mathrm{n}: \mathbb{N}
$$

- Loop implementation

```
{{ Inv: s = square(i) }}
while (i != n) {
    {{s=square(i) and i\not= n }}
    s = s + i + i + 1;
    {{s=square(i+1) }}
    i = i + 1;
    {{s=square(i) }}
}
return s;
```


Example Loop Correctness

func square(0) $\quad:=0$

$$
\operatorname{square}(\mathrm{n}+1):=\operatorname{square}(\mathrm{n})+2 \mathrm{n}+1 \quad \text { for any } \mathrm{n}: \mathbb{N}
$$

- Loop implementation

```
    {{ Inv: s = square(i) }}
    while (i != n) {
        {{s=square(i) and i\not=n }}
        {{s+2i+1= square(i+1) }}
    s = s + i + i + 1;
    {{s=square(i+1)}}
    i = i + 1;
    {{s= square(i) }}
}
return s;
```


Example Loop Correctness

func square(0) $\quad:=0$

$$
\text { square }(\mathrm{n}+1):=\operatorname{square}(\mathrm{n})+2 \mathrm{n}+1 \quad \text { for any } \mathrm{n}: \mathbb{N}
$$

- Loop implementation

```
{{ Inv: s = square(i) }}
while (i != n) {
    {{s=square(i) and i}=\textrm{n}}
    {{s+2i+1= square(i+1) }}
    s = s + i + i + 1;
    {{ s= square(i+1) }}
    i = i + 1;
    {{s=square(i) }} s s+2i+1= square(i) + 2i i + 1
}
return s;
```


"Bottom Up" Loops on Natural Numbers

- Previous examples store function value in a variable

$$
\begin{aligned}
& \{\{\text { Inv: } \mathrm{s}=\text { sum-to(i) }\}\} \\
& \{\{\text { Inv: } \mathrm{s}=\text { square }(\mathrm{i})\}\}
\end{aligned}
$$

- Start with $\mathrm{i}=0$ and work up to $\mathrm{i}=\mathrm{n}$
- Call this a "bottom up" implementation
- evaluates in the same order as recursion
- from the base case up to the full input
square(3)
square(2)
square(1)
square(0)

"Bottom Up" Loops on the Natural Numbers

$$
\begin{aligned}
\text { func } f(0) & :=\ldots \\
f(n+1) & :=\ldots f(n) \ldots
\end{aligned} \quad \text { for any } n: \mathbb{N}
$$

- Can be implemented with a loop like this

```
const f =(n: number): number => {
    let i: number = 0;
    let s: number = ".."; // = f(0)
    {{ Inv: s = f(i) }}
    while (i != n) {
        s = "...f(i) .."[f(i)\mapstos] // = f(i+1)
        i = i + 1;
    }
    return s;
};
```


"Bottom Up" Loops on Lists

- Works nicely on \mathbb{N}
- numbers are built up from 0 using succ (+1)
- e.g., build $n=3$ up from 0

$$
\mathrm{n}=3 \stackrel{+1}{\leftrightarrows} 2 \stackrel{+1}{\leftrightarrows} 1 \stackrel{+1}{\leftrightarrows} 0
$$

- What about List?
- lists are built up from nil using cons
- e.g., build $L=\operatorname{cons}(c, \operatorname{cons}(b, \operatorname{cons}(a, n i l)))$ from nil:

$$
\mathrm{L}=\mathrm{c} \longrightarrow \mathrm{~b} \longrightarrow \mathrm{a} \longrightarrow \text { nil }
$$

"Bottom Up" Loops on Lists?

- What about List?
- lists are built up from nil using cons
- e.g., build $L=\operatorname{cons}(1, \operatorname{cons}(2, \operatorname{cons}(3$, nil $)))$ from nil:

- First step to build L is to build cons(3, nil) from nil
- how do we know what number to put in front of nil?

3 is all the way at the end of the list!

- how can we fix this?
- reverse the list!

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(\mathrm{x}, \mathrm{~L})) & :=\operatorname{cons}(2 \mathrm{x}, \text { twice(L)) for any } \mathrm{x}: \mathbb{Z} \text { and } \mathrm{L}: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R"

- watch what happens as we move R forward...

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R"
- moving forward in R is moving backward in L...

$$
\begin{aligned}
\mathrm{L}=1 & \longrightarrow 2 \\
\mathrm{R}=4 & \longrightarrow 2
\end{aligned} \rightarrow \text { nil }
$$

- as R moves forward, $\operatorname{rev}(\mathrm{R})$ remains a prefix of L

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice(L)) for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R"
- moving forward in R is moving backward in L...

- value dropped from R was $\operatorname{last}(L)=3$

[^0]
Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R" initially. move forward to R.tl, etc.
- add items skipped over by R to the front of "S"

$$
\begin{aligned}
& \mathrm{L}=1 \\
& \mathrm{R}=2 \\
& \mathrm{~S}=2 \longrightarrow 3
\end{aligned} \longrightarrow \text { nil }
$$

- as R moves forward, S stores a suffix of L

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R" initially. move forward to R.tl, etc.
- add items skipped over by R to the front of "S"

$$
S=3 \longrightarrow \text { nil }
$$

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R" initially. move forward to R.tl, etc.
- add items skipped over by R to the front of "S"

$$
\begin{aligned}
& \mathrm{L}={\underset{\mathrm{rev}(\mathrm{R})}{2}}_{\underbrace{}_{\mathrm{S}}}^{\underbrace{2}_{2} \longrightarrow 3} \text { nil } \\
& \mathrm{R}=1 \rightarrow \text { nil } \\
& \mathrm{S}=2 \longrightarrow 3 \longrightarrow \text { nil }
\end{aligned}
$$

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store $\operatorname{rev}(L)$ in "R" initially. move forward to R.tl, etc.
- add items skipped over by R to the front of "S"

- Formalize that idea in the loop invariant

$$
\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R}), \mathrm{S})
$$

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Loop idea for calculating twice(L):
- store rev(L) in "R" initially
- add items skipped over by R to the front of "S"
- advance by moving R forward (shrinking R, growing S)
S is built "bottom up" into the entire list L
- calculate twice(S), as we go, in "T"
- Formalize that idea in the loop invariant

$$
\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S}) \text { and } \mathrm{T}=\operatorname{twice}(\mathrm{S})
$$

Example "Bottom Up" List Loop

```
func twice(nil) := nil
    twice(cons(x, L)) := cons(2x, twice(L)) for any x : Z and L : List
```

- This loop claims to calculate twice(L)...

```
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
{{ Inv: L = concat(rev(R),S) and T = twice(S) }}
while (R !== nil) {
    T = cons(2 * R.hd, T); Still need to check this.
    S = cons(R.hd, S);
    R = R.tl;
}
return T; // = twice(L)
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : Z and L : List
```

- This loop claims to calculate twice(L)

```
{{Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R !== nil) {
    T = cons(2 * R.hd, T);
    S = cons(R.hd, S);
    R = R.tl;
}
{{L= concat(rev(R),S) and T = twice(S) and R = nil }}
{{ T = twice(L) }}
return T; // = twice(L)
```


Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Check that Inv is implies the postcondition:

```
\(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\operatorname{twice}(\mathrm{S})\) and \(\mathrm{R}=\operatorname{nil}\}\}\)
\(\{\{\mathrm{T}=\operatorname{twice}(\mathrm{L})\}\}\)
\(\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R}), \mathrm{S})\)
    \(=\operatorname{concat}(\operatorname{rev}(\) nil \(), S) \quad\) since \(R=\) nil
    \(=\) concat(nil, S) def of rev
    \(=S \quad\) def of concat
\(\mathrm{T}=\mathrm{twice}(\mathrm{S})\)
    \(=\) twice \((\mathrm{L}) \quad\) since \(\mathrm{L}=\mathrm{S}\)
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
    twice(cons(x, L)) := cons(2x, twice(L)) for any x:\mathbb{Z and L : List}
```

- This loop claims to calculate twice(L)

```
{{}}
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
```



```
{{ Inv: L = concat(rev(R),S) and T = twice(S) }}
while (R !== nil) {
    T = cons(2 * R.hd, T);
    S = cons(R.hd, S);
    R = R.tl;
}
```


Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \operatorname{twice}(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Check that Inv is true initially:

```
\(\{\{\mathrm{R}=\operatorname{rev}(\mathrm{L})\) and \(S=\) nil and \(T=\operatorname{nil}\}\}\)
\(\{\{\) Inv: \(\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice(S) \(\}\}\)
concat(rev(R), S)
\(=\operatorname{concat}(\operatorname{rev}(\operatorname{rev}(\mathrm{L})), \mathrm{S}) \quad\) since \(\mathrm{R}=\operatorname{rev}(\mathrm{L})\)
\(=\) concat \((\mathrm{L}, \mathrm{S})\)
\(=\) concat \((\mathrm{L}\), nil)
\(=\mathrm{L}\)
twice(S)
    \(=\) twice(nil)
    = nil
    \(=\mathrm{T}\)
```

```
since S = nil
```

since S = nil
def of twice
def of twice
since T = nil

```
since T = nil
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
    twice(cons(x,L)) := cons(2x, twice(L)) for any x:\mathbb{Z and L : List}
```

- This loop claims to calculate twice(L)

```
\(\{\{\) Inv: \(\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice \((\mathrm{S})\}\}\)
while (R !== nil) \{
    \(\{\{\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice \((\mathrm{S})\) and \(\mathrm{R} \neq\) nil \(\}\}\)
    \(T\) = cons (2 * R.hd, \(T\) );
    S = cons(R.hd, S);
    R = R.tl;
    \(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\operatorname{twice}(\mathrm{S})\}\}\)
\}
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
    twice(cons(x, L)) := cons(2x, twice(L)) for any x:\mathbb{Z and L : List}
```

- This loop claims to calculate twice(L)

```
\(\{\{\) Inv: \(\mathrm{L}=\) concat \((\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice \((\mathrm{S})\}\}\)
while ( R !== nil) \{
    \(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice \((\mathrm{S})\) and \(\mathrm{R} \neq \mathrm{nil}\}\}\)
    \(\mathrm{T}=\operatorname{cons}(2 * R . h d, T)\);
    \(S=\) cons (R.hd, \(S)\);
    \(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R} . \mathrm{tl}), \mathrm{S})\) and \(\mathrm{T}=\) twice(S) \(\}\}\)
    R = R.tl;
    \(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\operatorname{twice}(\mathrm{S})\}\}\)
\}
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x:\mathbb{Z and L : List}
```

- This loop claims to calculate twice(L)

```
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R !== nil) {
    {{L= concat(rev(R),S) and T = twice(S) and R\not= nil }}
    T = cons(2 * R.hd, T);
    {{L= concat(rev(R.tl), cons(R.hd, S)) and T = twice(S) }}
    S = cons(R.hd, S);
    {{L= concat(rev(R.tl),S) and T = twice(S) }}
    R = R.tl;
    {{L= concat(rev(R),S) and T = twice(S) }}
}
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
    twice(cons(x, L)) := cons(2x, twice(L)) for any x : Z and L : List
```

- This loop claims to calculate twice(L)

```
\(\{\{\operatorname{Inv}: \mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice \((\mathrm{S})\}\}\)
while (R !== nil) \{
    \(\{\{\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\) twice \((\mathrm{S})\) and \(\mathrm{R} \neq\) nil \(\}\}\)
    \(\{\{\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R} . \mathrm{tl}), \operatorname{cons}(\mathrm{R} . \mathrm{hd}, \mathrm{S}))\) and cons(2•R.hd, T\()=\operatorname{twice}(\operatorname{cons}(\) R.hd, S\())\}\}\)
    \(T\) = cons (2 * R.hd, \(T\) );
    \(\{\{\mathrm{L}=\operatorname{concat}(\mathrm{rev}(\mathrm{R} . \mathrm{tl}), \operatorname{cons}(\mathrm{R} . \mathrm{hd}, \mathrm{S}))\) and \(\mathrm{T}=\) twice \((\operatorname{cons}(\) R.hd, S\())\}\}\)
    S = cons(R.hd, S);
    \(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R} . \mathrm{tl}), \mathrm{S})\) and \(\mathrm{T}=\operatorname{twice}(\mathrm{S})\}\}\)
    R = R.tl;
    \(\{\{\mathrm{L}=\operatorname{concat}(\operatorname{rev}(\mathrm{R}), \mathrm{S})\) and \(\mathrm{T}=\operatorname{twice}(\mathrm{S})\}\}\)
\}
```


Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Check that Inv is preserved by the loop body:

```
{{L = concat(rev(R),S) and T = twice(S) and R\not= nil }}
{{L = concat(rev(R.tl), cons(R.hd,S)) and cons(2 R.hd, T) = twice(cons(R.hd, S)) }}
twice(cons(R.hd, S))
    = cons(2 R.hd, twice(S)) def of twice
    = cons(2 R.hd, T) since T = twice(S)
```

Note that $\mathrm{R} \neq$ nil means $\mathrm{R}=$ cons(R.hd, R.tl)

Example "Bottom Up" List Loop

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- Check that Inv is preserved by the loop body:

```
{{ L = concat(rev(R),S) and T = twice(S) and R = nil }}
{{ L = concat(rev(R.tl), cons(R.hd, S)) and cons(2.R.hd, T) = twice(cons(R.hd, S)) }}
L = concat(rev(R),S)
    = concat(rev(cons(R.hd, R.tl)), S) since R}==\mathrm{ nil
    = concat(concat(rev(R.tl), cons(R.hd, nil)), S) def of rev
    = concat(rev(R.tl), concat(cons(R.hd, nil), S)) Lemma 2
    = concat(rev(R.tl), cons(R.hd, concat(nil, S)) def of concat
    = concat(rev(R.tl), cons(R.hd,S)) def of concat
```


Example "Bottom Up" List Loop

```
func twice(nil) := nil
    twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z and L : List}
```

- This loop claims to calculate twice(L)

```
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
{{ Inv: L = concat(rev(R),S) and T = twice(S) }}
while (R !== nil) {
    T = cons(2 * R.hd, T);
    S = cons(R.hd, S);
    R = R.tl;
}
return T; // = twice(L)
```

" S " is unused! We could remove it.
"S" is useful for proving correctness
but it is not needed at run-time.
(Example of a "ghost" variable.)

"Bottom Up" Loops on Lists

$$
\begin{array}{ll}
\text { func } f(\text { nil }) & :=\ldots \\
f(\operatorname{cons}(x, L)) & :=\ldots \\
f(L) \ldots & \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{array}
$$

- Can be implemented with a loop like this

```
const f = (L: List): List => {
    let R: List = rev(L);
    let S: List = nil;
    let T: List = ...; // = f(nil)
    {{ Inv: L = concat(rev(R),S) and T =f(S) }}
    while (R !== nil) {
        T = "...f(L) ..." [f(L)\mapstoT]
        S = cons(R.hd, S);
        R = R.tl;
    }
    return T; // = f(L)
};
```


Tail Recursion

$$
\begin{aligned}
\text { func twice(nil) } & :=\text { nil } \\
\text { twice }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(2 x, \text { twice }(L)) \text { for any } x: \mathbb{Z} \text { and } L: \text { List }
\end{aligned}
$$

- To calculate twice(cons(x, L)):
- recursively calculate $S=$ twice (L)
- when that returns, construct and return cons(2x,S)
- Not all functions require work after recursion:

$$
\begin{array}{clr}
\text { func rev-acc(nil, } \mathrm{R}) & :=\mathrm{R} & \text { for any } \mathrm{R}: \text { List } \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R})) & \text { for any } \mathrm{x}: \mathbb{Z} \text { and } \\
& & \text { any } \mathrm{L}, \mathrm{R}: \text { List }
\end{array}
$$

- such functions are called "tail recursive"

"Top Down" List Loop

```
func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))
```

- Tail recursion can be implemented top-down
- no need to reverse the list

```
const rev acc = (S: List, R: List): List => {
    {{ Inv: rev-acc(S S , R 
    while (S !== nil) {
        R = cons(S.hd, R);
        S = S.tl;
    }
    return R; // = rev-acc(So, Ro)
};
```

Easy to see that Inv holds initially
since $S=S_{0}$ and $R=R_{0}$

"Top Down" List Loop

$$
\begin{aligned}
\text { func rev-acc(nil, R) } & :=\mathrm{R} \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R}))
\end{aligned}
$$

- Check that the postcondition holds upon exit:

```
const rev_acc = (S: List, R: List): List => {
    {{Inv: rev-acc(S S , R 
    while (S !== nil) {
        R = cons(S.hd, R);
        S = S.tl;
    }
    {{rev-acc(S S, R R ) = rev-acc(S,R) and S = nil }}
    {{R=rev-acc(S ( }\mp@subsup{\textrm{R}}{0}{},\mp@subsup{\textrm{R}}{0}{})}
    return R; // = rev-acc(So, Ro)
};
```


"Top Down" List Loop

$$
\begin{aligned}
\text { func } \operatorname{rev}-\operatorname{acc}(\operatorname{nil}, \mathrm{R}) & :=\mathrm{R} \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R}))
\end{aligned}
$$

- Check that the postcondition holds upon exit:

$$
\begin{aligned}
& \left\{\left\{\operatorname{rev}-\operatorname{acc}\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)=\operatorname{rev}-\operatorname{acc}(\mathrm{S}, \mathrm{R}) \text { and } \mathrm{S}=\mathrm{nil}\right\}\right\} \\
& \left\{\left\{\mathrm{R}=\operatorname{rev}-\operatorname{acc}\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)\right\}\right\} \\
& r e v-\operatorname{acc}\left(S_{0}, R_{0}\right) \\
& =\operatorname{rev}-\operatorname{acc}(S, R) \\
& =r e v-\operatorname{acc}(\text { nil, } R) \quad \text { since } S=\text { nil } \\
& =\mathrm{R} \\
& \text { def of rev-acc }
\end{aligned}
$$

"Top Down" List Loop

$$
\begin{aligned}
\text { func } \operatorname{rev}-\operatorname{acc}(\operatorname{nil}, \mathrm{R}) & :=\mathrm{R} \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R}))
\end{aligned}
$$

- Check that Inv is preserved by the loop body:

```
{{ Inv: rev-acc(S (S, R ( ) = rev-acc(S,R) }}
while (S !== nil) {
    {{rev-acc(S (S, R R ) = rev-acc(S,R) and S = nil }}
    R = cons(S.hd, R);
    S = S.tl;
    {{rev-acc(S ( , R N ) = rev-acc(S, R) }}
}
```


"Top Down" List Loop

$$
\begin{aligned}
\text { func rev-acc(nil, R) } & :=\mathrm{R} \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R}))
\end{aligned}
$$

- Check that Inv is preserved by the loop body:

```
{{ Inv: rev-acc(S (S, R ( ) = rev-acc(S,R) }}
while (S !== nil) {
    {{ rev-acc(S (S, R R ) = rev-acc(S,R) and S = nil }}
    R = cons(S.hd, R);
    {{rev-acc(S (S, R R ) = rev-acc(S.tl, R) }}
    S = S.tl;
    {{\operatorname{rev}-\operatorname{acc}(\mp@subsup{\textrm{S}}{0}{},\mp@subsup{\textrm{R}}{0}{})=\operatorname{rev}-\operatorname{acc}(\textrm{S},\textrm{R})}}
}
```


"Top Down" List Loop

$$
\begin{aligned}
\text { func } \operatorname{rev}-\operatorname{acc}(\operatorname{nil}, \mathrm{R}) & :=\mathrm{R} \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R}))
\end{aligned}
$$

- Check that Inv is preserved by the loop body:

```
\(\left\{\left\{\right.\right.\) Inv: rev-acc \(\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)=\) rev_acc(S, R) \}\}
while (S !== nil) \{
    \(\left\{\left\{\operatorname{rev}-\operatorname{acc}\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)=\operatorname{rev}-\operatorname{acc}(\mathrm{S}, \mathrm{R})\right.\right.\) and \(\mathrm{S} \neq\) nil \(\left.\}\right\}\)
    \(\left\{\left\{\operatorname{rev}-\operatorname{acc}\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)=\operatorname{rev}-\operatorname{acc}(\mathrm{S} . \mathrm{tl}, \operatorname{cons}(\mathrm{S} . h \mathrm{~d}, \mathrm{R}))\right\}\right\}\)
    R = cons (S.hd, R);
    \(\left\{\left\{\operatorname{rev}-\operatorname{acc}\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)=\operatorname{rev}-\operatorname{acc}(\mathrm{S} . \mathrm{tl}, \mathrm{R})\right\}\right\}\)
    S = S.tl;
    \(\left\{\left\{\operatorname{rev}-\operatorname{acc}\left(\mathrm{S}_{0}, \mathrm{R}_{0}\right)=\operatorname{rev}-\operatorname{acc}(\mathrm{S}, \mathrm{R})\right\}\right\}\)
\}
```


"Top Down" List Loop

$$
\begin{aligned}
\text { func } \operatorname{rev}-\operatorname{acc}(\operatorname{nil}, \mathrm{R}) & :=\mathrm{R} \\
\operatorname{rev}-\operatorname{acc}(\operatorname{cons}(\mathrm{x}, \mathrm{~L}), \mathrm{R}) & :=\operatorname{rev}-\operatorname{acc}(\mathrm{L}, \operatorname{cons}(\mathrm{x}, \mathrm{R}))
\end{aligned}
$$

- Check that Inv is preserved by the loop body:

```
{{rev-acc(S (S, R R ) = rev-acc(S,R) and S = nil }}
{{ rev-acc(S0, R 
rev-acc(S.tl, cons(S.hd, R))
    = rev-acc(cons(S.hd, S.tl), R) def of rev-acc
    = rev-acc(S, R)
    = rev-acc(S0, R )
```

```
since S = nil
```

since S = nil
since rev-acc(S, R) = rev-acc(S (, R

```
since rev-acc(S, R) = rev-acc(S ( , R 
```


Tail Recursion Elimination

- Most functional languages eliminate tail recursion
- acts like a loop at run-time
- true of JavaScript as well
- Alternatives for reducing space usage:

1. Find a loop that implements it check correctness with Floyd logic
2. Find an equivalent tail-recursive function check equivalence with structural induction

[^0]: can use it to build cons(3, nil)

