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Recall: Hoare Triples

• A Hoare triple has two assertions and some code

	 	 {{	P	}}
	 	 				S	
	 	 {{	Q	}}

– P is the precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

does not matter what the code does if P does not hold initially

– otherwise, the triple is invalid



Recall: Correctness via Forward / Backward Reasoning

• Turn correctness into checking an implication

      Forward      Backward

	 {{	P	}}	 	 	 	 	 	 {{	P	}}
	 				S     	 	 {{	R	}}
	 {{	R	}}		 	 	 	 	 				S
	 {{	Q	}}		 	 	 	 	 {{	Q	}}

	 	 			R implies	Q	?	 	 	 		P	implies	R	?

• Check the implication by calculation (as before)



Recall: Forward and Backward Reasoning

• Imperative code made up of
– assignments
– conditionals
– loops

• Anything can be rewritten with just these

• We will learn forward / backward rules to handle them
– will also learn a rule for function calls
– once we have those, we are done



Assignments



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17;

{{	w	>	0	and	x	=	17	}}
 y = 42;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}

• With no mutation, rule is {{	P	}}	x = y;	{{	P	and	x	=	y	}}

• That rule does not work if P refers to “x”
– need to invent a new name, x0, to refer to x’s old value
– change the “x”s in P into “x0”s since they mean the old value



Forward Reasoning through Assignments

• For assignments, general forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	x0]	and	x	=	y[x	↦	x0]	}}

– replace all “x”s in P and y with “x0”s  (or any new name) 



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: number): number =? {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n2	≥	10	}}
  return n * n;
};

• Code is correct if this triple is valid…



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: number): number =? {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n0	≥	1	and	n	=	n0	+	3	}}
  {{	n2	≥	10	}}
  return n * n;
};

n2	 =	(n0	+	3)2	 	 	 since n	=	n0	+	3
	 ≥	42		 	 	 	 since n0	≥	1
	 =	16
	 ≥	10

check this implication



Forward Reasoning through Assignments

• For assignments, general forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	x0]	and	x	=	y[x	↦	x0]	}}

– replace all “x”s in P and y with “x0”s  (or any new name) 

• This process can be simplified in many cases
– no need for x0 if we can write old value in terms of new value
– e.g., if “x	=	x0	+	1”, then “x0	=	x	–	1”
– assertions will be easier to read without old values

(Technically, this is weakening, but it’s usually fine
 Postconditions usually do not refer to old values of variables.)



Forward Reasoning through Assignments

• For assignments, forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	x0]	and	x	=	y[x	↦	x0]	}}	 	 	 	x0	is any new variable name

• If we can write x0	=	f(x), then we can simplify this to

{{	P	}}
				x = … x …;
{{	P[x	↦	f(x)]	}}	 	 	 	 	 	 no need for, e.g., “and	x	=	x0	+	1”

– if assignment is “x	=	x0	+	1”, then “x0	=	x	–	1”
– if assignment is “x	=	2x0”, then “x0	=	x/2”
– does not work for integer division (an un-invertible operation)



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: number): number =? {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n	–	3	≥	1	}}
  {{	n2	≥	10	}}
  return n * n;
};

n2	 ≥	42		 	 	 since n	–	3	≥	1	(i.e.,		n	≥	4)
	 =	16
	 >	10

n	=	n0	+	3	means n	–	3	=	n0

check this implication

This is the preferred approach.
Avoid subscripts when possible.



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17;

{{	_______________________	}}
 y = 42;

{{	_______________________	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before z = w + x + y so z	<	0 ?
– want the weakest postcondition (most allowed states)



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17;

{{	_______________________	}}
 y = 42;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before z = w + x + y so z	<	0 ?
– must have w	+	x	+	y	<	0 beforehand

• What must be true before y = 42 for w	+	x	+	y	<	0 ?



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17;

{{	w	+	x	+	42	<	0	}}
 y = 42;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before y = 42 for w	+	x	+	y	<	0 ?
– must have w	+	x	+	42	<	0 beforehand

• What must be true before x = 17 for w	+	x	+	42	<	0 ?



Example Backward Reasoning with Assignments

{{	w	+	17	+	42	<	0	}}
 x = 17;

{{	w	+	x	+	42	<	0	}}
 y = 42;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before x = 17 for w	+	x	+	42	<	0 ?
– must have w	+	59	<	0 beforehand

• All we did was substitute right side for the left side
– e.g., substitute “w	+	x	+	y” for “z” in “z	<	0”
– e.g., substitute “42” for “y” in “w	+	x	+	y	<	0”
– e.g., substitute “17” for “x” in “w	+	x	+	42	<	0”



Backward Reasoning through Assignments

• For assignments, backward reasoning is substitution

{{	Q[x	↦	y]	}}
				x = y;
{{	Q	}}

– just replace all the “x”s with “y”s
– we will denote this substitution by Q[x	↦	y]

• Mechanically simpler than forward reasoning
– no need for subscripts



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: number): number =? {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n2	≥	10	}}
  return n * n;
};

• Code is correct if this triple is valid…



Correctness Example by Backward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: number): number => {
  {{	n	≥	1	}}
  {{	(n	+	3)2	≥	10	}}
  n = n + 3;
  {{	n2	≥	10	}}
  return n * n;
};

(n+3)2	 	≥	(1	+	3)2	 	 	 since	n	≥	1
	 	 =	16
	 	 >	10

check this implication



Conditionals



Conditionals in Functional Programming

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: number, b: number): number => {
  if (a >= 0 && b >= 0) {
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Prior reasoning also included conditionals
– what does that look like in Floyd logic?



Conditionals in Floyd Logic

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: number, b: number): number => {
  {{	}}
  if (a >= 0 && b >= 0) {
    {{	a	≥	0	and	b	≥	0	}}
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Conditionals introduce extra facts in forward reasoning
– simple “and” case since nothing is mutated



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  let m;
  if (n >= 0) {
    m = 2*n + 1;
  } else {
    m = 0;

  }
  return m;
}

• Code like this was impossible without mutation
– cannot write to a “const” after its declaration

• How do we handle it now?



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  let m;
  if (n >= 0) {
    m = 2*n + 1;
  } else {
    m = 0;

  }
  return m;
}

• Reason separately about each path to a return
– handle each path the same as before
– but now there can be multiple paths to one return



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  {{	}}
  let m;
  if (n >= 0) {
    m = 2*n + 1;

  } else {
    m = 0;
  }

  {{	m	>	n	}}
  return m;
}

• Check correctness path through “then” branch



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  {{	}}
  let m;
  if (n >= 0) {
    {{	n	≥	0	}}
    m = 2*n + 1;

  } else {
    m = 0;

  }
  {{	m	>	n	}}
  return m;
}



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  {{	}}
  let m;
  if (n >= 0) {
    {{	n	≥	0	}}
    m = 2*n + 1;

    {{	n	≥	0	and	m	=	2n	+	1}}
  } else {
    m = 0;
  }

  {{	m	>	n	}}
  return m;
}



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  {{	}}
  let m;
  if (n >= 0) {
    {{	n	≥	0	}}
    m = 2*n + 1;

    {{	n	≥	0	and	m	=	2n	+	1}}
  } else {
    m = 0;
  }

  {{	n	≥	0	and	m	=	2n	+	1	}}
  {{	m	>	n	}}
  return m;
}

m	 =	2n+1
	 >	2n	 	 since 1	>	0
	 ≥	n		 	 since n	≥	0



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  {{	}}
  let m;
  if (n >= 0) {
    m = 2*n + 1;

  } else {
    m = 0;
  }

  {{	n	≥	0	and	m	=	2n	+	1	}}
  {{	m	>	n	}}
  return m;
}

• Note: no mutation, so we can do this in our head
– read along the path, and collect all the facts



Conditionals in Floyd Logic

// Returns a number m with m > n
const g = (n: number): number => {
  {{	}}
  let m;
  if (n >= 0) {
    m = 2*n + 1;

  } else {
    m = 0;
  }

  {{	n	<	0	and	m	=	0	}}
  {{	m	>	n	}}
  return m;
}

• Check correctness path through “else” branch
– note: no mutation, so we can do this in our head

m	 =	0
	 >	n		 	 since 0	>	n



Function Calls



Reasoning about Function Calls

// @requires P2           -- preconditions a, b
// @returns x such that R -- conditions on a, b, x
const f = (a: number, b: number): number => {..}

• Forward reasoning rule is

{{	P	}}
				x = f(a, b);
{{	P[x	↦	x0]	and	R	}}

• Backward reasoning rule is

{{	Q1	and	P2	}}
				x = f(a, b);
{{	Q1	and	Q2	}}

Must also check that P implies P2

Must also check that R implies Q2

Q2 is the part of postcondition using “x”



Loops



Correctness of Loops

• Assignment and condition reasoning is mechanical

• Loop reasoning cannot be made mechanical
– no way around this

(311 alert: this follows from Rice’s Theorem)

• Thankfully, one extra bit of information fixes this
– need to provide a “loop invariant”
– with the invariant, reasoning is again mechanical



Loop Invariants

• Loop invariant is true every time at the top of the loop

{{	Inv:	I	}}
while (cond) {
  S
}

– must be true when we get to the top the first time
– must remain true each time execute S and loop back up

• Use “Inv:” to indicate a loop invariant
otherwise, this only claims to be true the first time at the loop



Loop Invariants

• Loop invariant is true every time at the top of the loop

{{	Inv:	I	}}
while (cond) {
  S
}

– must be true 0 times through the loop (at top the first time)
– if true n times through, must be true n+1 times through

• Why do these imply it is always true?
– follows by structural induction (on ℕ)



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

• How do we check validity with a loop invariant?
– intermediate assertion splits into three triples to check



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

Splits correctness into three parts

1.  I holds initially
2.  S	preserves	I
3.  Q holds when loop exits

1.  I holds initially



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 {{	I	and	cond	}}
  S
 {{	I	}}
}

{{	Q	}}

Splits correctness into three parts

1.  I holds initially
2.  S	preserves	I
3.  Q holds when loop exits

1.  I holds initially

2.  S	preserves	I



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 {{	I	and	cond	}}
  S
 {{	I	}}
}
{{	I	and	not	cond	}}
{{	Q	}}

Splits correctness into three parts

1.  I holds initially      implication

2.  S	preserves	I	 	 	 	 	 	 forward/back then implication

3.  Q holds when loop exits   implication

1.  I holds initially

2.  S	preserves	I

3.  Q holds when loop exits



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

Formally, invariant split this into three Hoare triples:

1. {{	P	}}		{{	I	}}     I holds initially
2. {{	I	and	cond	}}		S		{{	I	}}  S	preserves	I
3. {{	I	and	not	cond	}}		{{	Q	}}  Q holds when loop exits



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	sum-to(n)	+	(n+1)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{		}}
let i: number = 0;
let s: number = 0;

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  i = i + 1;

  s = s + i;
}

{{	s	=	sum-to(n)	}}



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	sum-to(n)	+	(n+1)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{		}}
let i: number = 0;
let s: number = 0;

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  i = i + 1;

  s = s + i;
}

{{	s	=	sum-to(n)	}}

Easy to get this wrong!
– might be initializing “i” wrong (i	=	1?)
– might be exiting at the wrong time (i	≠	n–1?)
– might have the assignments in wrong order
– …

Fact that we need to check 3 implications is a
strong indication that more bugs are possible.



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{		}}
let i: number = 0;
let s: number = 0;

{{	i	=	0	and	s	=	0	}}
{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  …

sum-to(i)
		=	sum-to(0)		 since i	=	0
		=	0	 	 	 def of sum-to
		=	s		



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  {{	s	=	sum-to(i)	and	i	≠	n	}}
  i = i + 1;

  s = s + i;
  {{	s	=	sum-to(i)	}}
}



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  {{	s	=	sum-to(i)	and	i	≠	n	}}
  i = i + 1;

  {{	s	=	sum-to(i–1)	and	i–1	≠	n	}}
  s = s + i;

  {{	s	=	sum-to(i)	}}
}



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  {{	s	=	sum-to(i)	and	i	≠	n	}}
  i = i + 1;

  {{	s	=	sum-to(i–1)	and	i–1	≠	n	}}
  s = s + i;

  {{	s	–	i	=	sum-to(i–1)	and	i–1	≠	n	}}
  {{	s	=	sum-to(i)	}}
}

s	 =	i	+	sum-to(i-1)	 since s	–	i	=	sum-to(i-1)
	 =	sum-to(i)	 	 def of sum-to



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  i = i + 1;

  s = s + i;

}

{{	s	=	sum-to(i)	and	i	=	n	}}
{{	s	=	sum-to(n)	}}

sum-to(n)
		=	sum-to(i)	 	 since i	=	n
		=	s		 	 	 since s	=	sum-to(i)



Termination

• This analysis does not check that the code terminates
– it shows that the postcondition holds if the loop exits
– but we never showed that the loop does exit

• Termination follows from the running time analysis
– e.g., if the code runs in O(n2) time, then it terminates
– an infinite loop would be O(infinity)
– any finite bound on the running time proves it terminates

• Normal to also analyze the running time of our code, 
and we get termination already from that analysis


