
Data Abstraction
Kevin Zatloukal

CSE 331

Abstraction Barrier

• Last time, we saw procedural abstraction

– specification is the “barrier” between the sides
– clients depend only on the spec
– implementer can write any code that satisfies the spec

Function
Implementation

Client
Function Call

Abstraction Barrier

Function Specification

Abstraction Barrier

• Last time, we saw procedural abstraction

• Specifications improve
– understandability (client)
– changeability (implementation)
– modularity

Function
Implementation

Client
Function Call

Abstraction Barrier

Function Specification

correctness is impossible
without specifications

Performance Improvements

• Last time, we saw rev-acc, which is faster than rev
– faster algorithm for reversing a list
– rare to see this

• Most perf improvements change data structures
– different kind of abstraction barrier for data

• Let’s see an example…

Last Element of a List

func	last(nil)	 	 	 	 :=		undefined
	 last(cons(x,	nil))	 	 :=		x		 	 	 	 for	any	x	:	ℤ
	 last(cons(x,	cons(y,	L))	:=	last(cons(y,	L))		 for	any	x,	y	:	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 							any	L	:	List

• Runs in ϴ(n) time
– walks down to the end of the list
– no faster way to do this on a list

• We could cache the last element
– new data type just dropped:

type FastLastList = {list: List, last: number|undefined}

empty list has undefined last

Fast-Last List

type FastLastList = {list: List, last: number|undefined}

• How do we switch to this type?
– change every List into FastLastList

• Will still have functions that operate on List
– e.g., len,	sum,	concat,	rev

• Suppose F is a FastLastList
– instead of calling rev(F), we have call rev(F.list)
– cleaner to introduce a helper function

Fast-Last List

type FastLastList = {list: List, last: number|undefined}

const getLast = (F: FastLastList): number|undefined => {
 return F.last;
};

const toList = (F: FastLastList): List<number> => {
 return F.list;
};

• How do we switch to this type?
– change every List into FastLastList
– replace F with toList(F) where a List is expected

• What happens if we need to change it again?
– do it all over again!

Another Fast List

• Suppose we often need the 2nd to last, 3rd to last, …
(back of the list). How can we make it faster?
– store the list in reverse order!

type FastBackList = List<number>;

const getLast = (F: FastBackList): number|undefined => {
 return (F === nil) ? undefined : F.hd;
};

const getSecondToLast = (F: FastBackList): number|undefined => {
 return (F === nil) ? undefined :
 (F.tl === nil) ? undefined : F.tl.hd;

};

const toList = (F: FastBackList): List<number> => {
 return rev(F);
};

Another Fast List

type FastBackList = List<number>;

const getLast = (F: FastBackList): number|undefined => {
 return (F === nil) ? undefined : F.hd;
};

const toList = (F: FastBackList): List<number> => {
 return rev(F);
};

• Problems with this solution…
– no type errors if someone forgets to call toList!

const F: FastBackList = …;
return concat(F, cons(1, nil)); // bad!

Another Fast List — Take Two

type FastBackList = {list: List<number>};

const getLast = (F: FastBackList): number|undefined => {
 return (F.list === nil) ? undefined : F.list.hd;
};

const toList = (F: FastBackList): List<number> => {
 return rev(F.list);
};

• Still some problems…
– no type errors if someone grabs the field directly

const F: FastBackList = …;
return concat(F.list, cons(1, nil)); // bad!

Another Fast List — Take Three

const F: FastBackList = …;
return concat(F.list, cons(1, nil)); // bad!

• Only way to completely stop this is to hide F.list
– do not give them the data, just the functions

type FastList = {
 getLast: () => number|undefined,
 toList: () => List<number>
};

– the only way to get the list is to call F.toList()
– seems weird… but we can make it look familiar

Another Fast List — Take Three

interface FastList {
 getLast: () => number|undefined;
 toList: () => List<number>;
}

• In TypeScript, “interface” is synonym for “record type”

• You’ve seen this in Java

interface FastList {
 int getLast() throws EmptyList;
 List<Integer> toList();

}

– in 331, our interfaces will only include functions (methods)

Java interface is a record where
field values are functions (methods)

Data Abstraction

Data Abstraction

• Give clients only operations, not data
– operations are “public”, data is “private”

• We call this an Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– fundamental concept in computer science

built into Java, JavaScript, etc.

– data abstraction via procedural abstraction

• Critical for the properties we want
– easier to change data structure
– easier to understand (hides details)
– more modular

How to Make a FastList — Attempt One

const makeFastList = (list: List<number>): FastList => {
 const last = last(list);
 return {
 getLast: () => { return last; },
 toList: () => { return list; }
 };

};

• Values in getLast and toList fields are functions

• There is a cleaner way to do this
– will also look more familiar

How to Make a FastList

class FastLastList implements FastList {
 last: number|undefined; // should be “readonly”
 list: List<number>;

 constructor(list: List<number>) {
 this.last = last(list);
 this.list = list;
 }

 getLast = () => { return this.last; };
 toList = () => { return this.list; };
}

• Can create a new record using “new”
– each record has fields list, last, getLast, toList
– bodies of functions use “this” to refer to the record

How to Make a FastList

class FastLastList implements FastList {
 last: number|undefined; // should be “readonly”
 list: List<number>;

 constructor(list: List<number>) {
 this.last = last(list);
 this.list = list;
 }

 getLast = () => { return this.last; };
 toList = () => { return this.list; };
}

• Can create a new record using “new”
– all four assignments are executed on each call to “new”
– getLast and toList are always the same functions

How to Make a FastList

class FastLastList implements FastList {
 last: number|undefined; // should be “readonly”
 list: List<number>;

 constructor(list: List<number>) {
 this.last = last(list);
 this.list = list;
 }

 getLast = () => { return this.last; };
 toList = () => { return this.list; };
}

• Implements the FastList interface
– i.e., it has the expected getLast and toList fields
– (okay for records to have more fields than required)

Another Way to Make a FastList

class FastBackList implements FastList {
 list: List<number>; // stored in reverse order

 constructor(list: List<number>) {
 this.list = rev(list);
 }

 getLast = () => {
 return (this.list === nil) ?
 undefined : this.list.hd;
 };

 toList = () => { return rev(this.list); }
}

• Might be better if we had more operations
– secondToLast, thirdToLast, etc., rev (no op)

How Do Clients Get a FastList

const makeFastList = (list: List<number>): FastList => {
 return new FastLastList (list);
};

• Export only FastList and makeFastList
– completely hides the data representation from clients

• This is called a “factory function”
– another design pattern
– can change implementations easily in the future

becomes FastBackList with a one-line change

• Difficult to add to the list with this interface
– requires three calls: toList, cons, makeFastList

Another Way To Do It

interface FastList {
 cons: (x: number) => FastList;
 getLast: () => number|undefined;
 toList: () => List<number>;
};

const makeFastList = (): FastList => {
 return new FastBackList(nil);
};

• New method cons returns list with x in front
– example of a “producer” method (others are “observers”)

produces a new list for you

– now, we only need to make an empty FastList
anything else can be built via cons

Another Way To Do It (Even Better)

interface FastList {
 cons: (x: number) => FastList;
 getLast: () => number|undefined;
 toList: () => List<number>;
};

const nilList: FastList = new FastBackList(nil);

const makeFastList = (): FastList => {
 return nilList;
};

• No need to create a new object using “new” every time
– can reuse the same instance

only possible since these are immutable!

– example of the “singleton” design pattern

Full ADT Design Pattern for 331

We will use the following design pattern for ADTs:

• “interface” used for defining ADTs
– declares the methods available

• “class” used for implementing ADTs
– defines the fields and methods
– implements the ADT interface above

• Factory function used to create instances

Stick to regular functions for rest of the code!

Specifications for ADTs

Specifications for ADTs

• Run into problems when we try to write specs
– for example, what goes after @return?

don’t want to say returns the .list field (or reverse of that)
we want to hide those details from clients

interface FastList {
 /**
 * Returns the “underlying” list of items
 * @return ??
 */
 toList: () => List<number>;
};

• Need some terminology to clear up confusion

ADT Terminology

New terminology for specifying ADTs

 Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: {list: List, last: number|undefined}

 Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• We’ve had different abstract and concrete types all along!
– in our math, List is an inductive type (abstract)
– in our code, List is a string or a record (concrete)

List Is Like an ADT

Inductive types also differ in abstract / concrete states:

 Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: “nil” | {kind: “cons”, hd: number, tl: List}

 Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• Inductive types also use a design pattern to work in TypeScript
– details are different than ADTs (e.g., no interfaces)

ADT Terminology

New terminology for specifying ADTs

 Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: {list: List, last: number|undefined}

 Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• Term “object” (or “obj”) will refer to abstract state
– “object” means mathematical object
– “obj” is the mathematical value that the record represents

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
 /**
 * Returns the last element of the list (O(1) time).
 * @returns last(obj)
 */
 getLast: () => number | undefined;

• “obj” refers to the abstract state (the list, in this case)
– actual state will be a record with fields last and list

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
 …

 /**
 * Returns the object as a regular list of items.
 * @returns obj
 */
 toList: () => List<number>;

• In math, this function does nothing (“@returns obj”)
– two different concrete representations of the same idea
– details of the representations are hidden from clients

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
 …

 /**
 * Returns a new list with x in front of this list.
 * @returns cons(x, obj)
 */
 cons = (x: number) => FastList;

• Producer method: makes a new list for you
– “obj” above is a list, so cons(x,	obj) makes sense in math

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
 …

 /**
 * Returns a new list with x in front of this list.
 * @returns cons(x, obj)
 */
 cons = (x: number) => FastList;

• Specification does not talk about fields, just “obj”
– fields are hidden from clients

