CSE 331

Structural Induction

Kevin Zatloukal

Proof by Calculation

- Our proofs so far have used fixed-length lists
- e.g., len(twice(cons(a, cons(b, nil)))) $=\operatorname{len}(\operatorname{cons}(a, \operatorname{cons}(b, n i l)))$
- problems in HW3 restrict to this case
- Would like to prove correctness on any list L
- Need more tools for this...
- structural recursion calculates on inductive types
- structural induction reasons about structural recursion
or more generally, to prove facts containing variables of an inductive type
- both tools are specific to inductive types

Structural Induction

Let $\mathrm{P}(\mathrm{S})$ be the claim "len(twice (S)) $=\operatorname{len}(\mathrm{S})$ "

To prove $\mathrm{P}(\mathrm{S})$ holds for any list S , prove two implications

Base Case: prove P (nil)

- use any known facts and definitions

Inductive Step: prove $\mathrm{P}(\operatorname{cons}(\mathrm{x}, \mathrm{L}))$ for any $\mathrm{x}: \mathbb{Z}, \mathrm{L}:$ List
$-X$ and L are variables ("direct proof")

- use any known facts and definitions plus one more fact...
- make use of the fact that L is also a List

Structural Induction

To prove $\mathrm{P}(\mathrm{S})$ holds for any list S , prove two implications

Base Case: prove P(nil)

- use any known facts and definitions

Inductive Hypothesis: assume $P(L)$ is true

- use this in the inductive step, but not anywhere else

Inductive Step: prove $\mathrm{P}(\operatorname{cons}(\mathrm{x}, \mathrm{L}))$ for any $\mathrm{x}: \mathbb{Z}, \mathrm{L}$: List

- direct proof
- use known facts and definitions and Inductive Hypothesis

Why This Works

With Structural Induction, we prove two facts

$$
\begin{array}{ll}
\mathrm{P}(\text { nil }) & \operatorname{len}(\text { twice }(\text { nil }))=\operatorname{len}(\text { nil }) \\
\mathrm{P}(\operatorname{cons}(\mathrm{x}, \mathrm{~L})) & \operatorname{len}(\operatorname{twice}(\operatorname{cons}(\mathrm{x}, \mathrm{~L})))=\operatorname{len}(\operatorname{cons}(\mathrm{x}, \mathrm{~L})) \\
& \quad(\operatorname{second} \text { assuming len }(\operatorname{twice}(\mathrm{L}))=\operatorname{len}(\mathrm{L}))
\end{array}
$$

Why is this enough to prove $\mathrm{P}(\mathrm{S})$ for any S : List?

Why This Works

Build up an object using constructors:

```
nil
cons(2, nil)
cons(1, cons(2, nil))
```

first constructor
second constructor
second constructor

nil already exists when building cons(2, nil)

cons(2, nil) already exists when building $\operatorname{cons}(1, \operatorname{cons}(2$, nil $))$

Why This Works

Build up a proof the same way we built up the object

```
P(nil) len(twice(nil)) = len(nil)
P(cons(x, L)) len(twice(cons(x, L))) = len(cons(x, L))
                                    (second assuming len(twice(L)) = len(L))
```


"We go together"

Structural Induction in General

- General case: assume P holds for constructor arguments

```
type T:= A | B(x:\mathbb{Z})|C(y:\mathbb{Z},t:T)|D(z:\mathbb{Z},u:T,v:T)
```

- To prove $\mathrm{P}(\mathrm{t})$ for any t , we need to prove:
- P(A)
- $P(B(x))$ for any $x: \mathbb{Z}$
- $P(C(y, t))$ for any $y: \mathbb{Z}$ and $t: T \quad$ assuming $P(t)$ is true
- $P(D(z, u, v)$) for any $z: \mathbb{Z}$ and $u, v: T$ assuming $P(u)$ and $P(v)$
- These four facts are enough to prove $P(t)$ for any t
- for each constructor, have proof that it produces an object satisfying P

Structural Induction in General

- General case: assume P holds for constructor arguments

```
type T:= A | B(x:\mathbb{Z})|C(y:\mathbb{Z},t:T)|D(z:\mathbb{Z},u:T,v:T)
```

- To prove $\mathrm{P}(\mathrm{t})$ for any t , we need to prove:
- P(A)
- $P(B(x))$ for any $x: \mathbb{Z}$
- $P(C(y, t))$ for any $y: \mathbb{Z}$ and $t: T \quad$ assuming $P(t)$ is true
- $P(D(z, u, v))$ for any $z: \mathbb{Z}$ and $u, v: T$ assuming $P(u)$ and $P(v)$
- Each inductive type has its own form of induction
- special way to reason about that type

Example: Repeating List Elements

- Consider the following function:

```
func echo(nil) := nil
    echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z,},\textrm{L}: List
```

- Produces a list where every element is repeated twice

```
echo(cons(1, cons(2, nil)))
    = cons(1, cons(1, echo(cons(2, nil)))) def of echo
    = cons(1, cons(1, cons(2, cons(2, echo(nil))))) def of echo
    = cons(1, cons(1, cons(2, cons(2, nil)))) def of echo
```


Example: Repeating List Elements

```
func echo(nil) := nil
    echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x:\mathbb{Z},L:List
```

- Suppose we have the following code:

```
const m: number = len(S); // S is some List
const R: List = echo(S);
return 2*m; // = len(echo(S))
Level }
```

- spec says to return len(echo(S)) but code returns 2 len(S)
- Need to prove that len(echo(S)) = 2 len(S)

Example: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo(cons }(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \text { echo(L))) }) \text { for any } x: \mathbb{Z}, L: \text { List }
\end{aligned}
$$

- Prove that len(echo(S)) $=2$ len(S) for any S : List

Base Case (nil):
Need to prove that len(echo(nil)) $=2 \operatorname{len}($ nil $)$
len(echo(nil)) =

Example: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \text { echo(L))) }
\end{aligned} \text { for any } x: \mathbb{Z}, L: \text { List }
$$

- Prove that len $(\operatorname{echo}(S))=2$ len(S) for any S : List

```
Base Case (nil):
\begin{tabular}{rlrl}
\(\operatorname{len}(\) echo(nil)) & \(=\operatorname{len}(\) nil \()\) & & \begin{tabular}{c} 
def of echo \\
def of len
\end{tabular} \\
& \(=0\) & & \\
& \(=2 \cdot 0\) & & def of len
\end{tabular}
```


Example: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \operatorname{echo}(L))) \text { for any } x: \mathbb{Z}, L: \text { List }
\end{aligned}
$$

- Prove that len $(\operatorname{echo}(S))=2$ len(S) for any S : List

Inductive Step (cons(x, L)):
Need to prove that len $(\operatorname{echo}(\operatorname{cons}(x, L)))=2 \operatorname{len}(\operatorname{cons}(x, L))$

Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

Example: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo(cons }(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \text { echo(L))) }
\end{aligned}
$$

- Prove that len(echo(S)) $=2$ len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) $=2$ len(L)

Inductive Step (cons(x, L)):
len(echo(cons(x, L)))

$$
=2 \operatorname{len}(\operatorname{cons}(x, L))
$$

Example: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \operatorname{echo}(L))) \text { for any } x: \mathbb{Z}, L: \text { List }
\end{aligned}
$$

- Prove that len $(\operatorname{echo}(S))=2$ len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (cons(x, L)):

$$
\begin{aligned}
\operatorname{len}(\operatorname{echo}(\operatorname{cons}(x, L))) & =\operatorname{len}(\operatorname{cons}(x, \operatorname{cons}(x, e \operatorname{ech}(L)))) & & \text { def of echo } \\
& =1+\operatorname{len}(\operatorname{cons}(x, \operatorname{echo}(L))) & & \text { def of len } \\
& =2+\operatorname{len}(\operatorname{echo}(L)) & & \text { def of len } \\
& =2+2 \operatorname{len}(L) & & \text { Ind. Hyp. } \\
& =2(1+\operatorname{len}(L)) & & \\
& =2 \operatorname{len}(\operatorname{cons}(x, L)) & & \text { def of len }
\end{aligned}
$$

Example 2: Repeating List Elements

```
func echo(nil) := nil
    echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z,L L List}
```

- Suppose we have the following code:

```
const y: number = sum(S); // S is some List
const R: List = echo(S);
return 2*y; // = sum(echo(S))
Level }
```

- spec says to return sum(echo(S)) but code returns 2 sum(S)
- Need to prove that sum(echo(S)) $=2 \operatorname{sum}(S)$

Example 2: Repeating List Elements

```
func echo(nil) := nil
    echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z,L L List}
```

- Prove that sum $(\operatorname{echo}(S))=2$ sum(S) for any S : List

```
Base Case (nil):
    sum(echo(nil)) =
    =2 sum(nil)
```

func sum(nil)	$:=0$
$\quad \operatorname{sum}(\operatorname{cons}(\mathrm{x}, \mathrm{L}))$	$:=\mathrm{x}+\operatorname{sum}(\mathrm{L}) \quad$ for any $\mathrm{x} \in \mathbb{Z}$ and any $\mathrm{L} \in$ List

Example 2: Repeating List Elements

```
func echo(nil) := nil
    echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z,L L List}
```

- Prove that sum $(e c h o(S))=2$ sum (S) for any S : List

Base Case (nil):

$\operatorname{sum}($ echo(nil))	$=\operatorname{sum}($ nil $)$		def of echo def of sum
	$=0$		
	$=2 \cdot 0$		def of sum

Inductive Step (cons(x, L)):
Need to prove that $\operatorname{sum}(\operatorname{echo}(\operatorname{cons}(x, L)))=2 \operatorname{sum}(\operatorname{cons}(x, L))$
Get to assume claim holds for L, i.e., that sum(echo(L)) $=2 \operatorname{sum}(\mathrm{~L})$

Example 2: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \operatorname{echo}(L))) \text { for any } x: \mathbb{Z}, L: \text { List }
\end{aligned}
$$

- Prove that sum $(\operatorname{echo}(S))=2$ sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) $=2 \operatorname{sum}(\mathrm{~L})$

Inductive Step (cons(x, L)):

$$
\operatorname{sum}(\operatorname{echo}(\operatorname{cons}(x, L)))=
$$

$$
=2 \operatorname{sum}(\operatorname{cons}(x, L))
$$

func sum(nil)	$:=0$
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L) \quad$ for any $x \in \mathbb{Z}$ and any $L \in$ List

Example 2: Repeating List Elements

$$
\begin{aligned}
\text { func echo(nil) } & :=\text { nil } \\
\text { echo }(\operatorname{cons}(x, L)) & :=\operatorname{cons}(x, \operatorname{cons}(x, \operatorname{echo}(L))) \text { for any } x: \mathbb{Z}, L: \text { List }
\end{aligned}
$$

- Prove that sum $(e c h o(S))=2$ sum (S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) $=2 \operatorname{sum}(\mathrm{~L})$

Inductive Step (cons(x, L)):

$$
\begin{aligned}
\operatorname{sum}(\operatorname{echo}(\operatorname{cons}(x, L))) & =\operatorname{sum}(\operatorname{cons}(x, \operatorname{cons}(x, e c h o(L)))) & & \text { def of echo } \\
& =x+\operatorname{sum}(\operatorname{cons}(x, e \operatorname{cho}(L))) & & \text { def of sum } \\
& =2 x+\operatorname{sum}(\operatorname{echo}(L)) & & \text { def of sum } \\
& =2 x+2 \operatorname{sum}(L) & & \text { Ind. Hyp. } \\
& =2(x+\operatorname{sum}(L)) & & \\
& =2 \operatorname{sum}(\operatorname{cons}(x, L)) & & \text { def of sum }
\end{aligned}
$$

Proof By Cases

Defining Functions by Cases

- Usually combine pattern matching with recursion
- Can use pattern matching on its own

func empty (nil)	$:=\mathrm{T}$
empty $(\operatorname{cons}(\mathrm{x}, \mathrm{L}))$	$:=\mathrm{F}$

- every list is either nil or cons (x, L) for some x and L
- rule can be applied to any list
- Pattern matching is one way to define by cases
- we've seen another way to do this...

Defining Functions by Cases

- Pattern matching is one way to define by cases
- Side conditions also define by cases
- e.g., define $f(m)$ where $m: \mathbb{Z}$

$$
\begin{aligned}
\text { func } \mathrm{f}(\mathrm{~m}) & :=2 \mathrm{~m}+1 & & \text { if } \mathrm{m} \geq 0 \\
\mathrm{f}(\mathrm{~m}) & :=0 & & \text { if } \mathrm{m}<0
\end{aligned}
$$

- to use the definition on $f(x)$, need to know if $x<0$ or not
- Need ways to reason about these functions as well

Proof By Cases

- New code structure means new proof structure
- Can split a proof into cases
- e.g., $x \geq 0$ and $x<0$
- need to be sure the cases are exhaustive (don't need to be exclusive in this case)
- If we can prove both cases, it is true in general

Proof By Cases

$$
\begin{aligned}
\text { func } f(\mathrm{~m}) & :=2 \mathrm{~m}+1 & & \text { if } \mathrm{m} \geq 0 \\
\mathrm{f}(\mathrm{~m}) & :=0 & & \text { if } \mathrm{m}<0
\end{aligned}
$$

- Prove that $\mathrm{f}(\mathrm{m})>\mathrm{m}$ for any $\mathrm{m}: \mathbb{Z}$

$$
\begin{aligned}
& \text { Case } \mathrm{m} \geq 0 \\
& \qquad \begin{array}{r}
\mathrm{f}(\mathrm{~m})= \\
\\
>\mathrm{m}
\end{array}
\end{aligned}
$$

Proof By Cases

$$
\begin{aligned}
\text { func } f(m) & :=2 m+1 & & \text { if } m \geq 0 \\
f(m) & :=0 & & \text { if } m<0
\end{aligned}
$$

- Prove that $\mathrm{f}(\mathrm{m})>\mathrm{m}$ for any $\mathrm{m}: \mathbb{Z}$

Case $m \geq 0$:

$$
\begin{aligned}
f(m) & =2 m+1 & & \text { def of } f(\text { since } m \geq 0) \\
& \geq m+1 & & \text { since } m \geq 0 \\
& >m & & \text { since } 1>0
\end{aligned}
$$

Proof By Cases

$$
\begin{aligned}
\text { func } f(m) & :=2 m+1 & & \text { if } m \geq 0 \\
f(m) & :=0 & & \text { if } m<0
\end{aligned}
$$

- Prove that $\mathrm{f}(\mathrm{m})>\mathrm{m}$ for any $\mathrm{m}: \mathbb{Z}$

Case $m \geq 0$:

$$
\mathrm{f}(\mathrm{~m})=\ldots>\mathrm{m}
$$

Case $\mathrm{m}<0$:

$$
\begin{aligned}
f(m) & =0 & & \text { def of } f(\text { since } m<0) \\
& >m & & \text { since } m<0
\end{aligned}
$$

Since these two cases are exhaustive, $f(m)>m$ holds in general.

Recall: Pattern Matching

- Define a function by an exhaustive set of patterns


```
func change({n: n, fwd: T}) := n
    change({n: n, fwd: F}):=-n
for any n:\mathbb{N}
for any n:\mathbb{N}
```

- Steps describes movement on the number line
- change(s : Steps) says how the position changes

- one of these two rules always applies

More Proof By Cases

```
func change({n: n, fwd: T}) := n for any n:\mathbb{N}
    change({n: n, fwd: F}) := -n for any n:\mathbb{N}
```

- Prove that |change(s)| = n for any $s=\{n: n, f w d: f\}$
- we need to know if $\mathrm{f}=\mathrm{T}$ or $\mathrm{f}=\mathrm{F}$ to apply the definition!

```
Case f = T:
    |change({n: n, fwd: f})|
    = |change({n: n, fwd: T})| since f=T
    = n| def of change
    =n since n}\geq
```


More Proof By Cases

```
func change({n: n, fwd: T}) := n for any n:\mathbb{N}
    change({n: n, fwd: F}) := -n for any n:N
```

- Prove that \mid change $(\mathrm{s}) \mid=\mathrm{n}$ for any $\mathrm{s}=\{\mathrm{n}: \mathrm{n}, \mathrm{fwd}: \mathrm{f}\}$

Case $\mathrm{f}=\mathrm{T}: \mid$ change $(\{\mathrm{n}: \mathrm{n}, \mathrm{fwd}: \mathrm{f}\}) \mid=\ldots=\mathrm{n}$
Case $\mathrm{f}=\mathrm{F}$:
|change(\{n: n, fwd: f\})|
$=\mid$ change $(\{n: n$, fwd: $F\}) \mid \quad$ since $f=F$
$=|-n| \quad$ def of change
$=n \quad$ since $n \geq 0$

Since these two cases are exhaustive, the claim holds in general.

