
Trees
Kevin Zatloukal

CSE 331

What We Get from Reasoning

• If the proof works, the code is correct
– why reasoning is useful for finding bugs

• If the code is incorrect, the proof will not work

• If the proof does not work, the code is probably wrong
could potentially be an issue with the proof (e.g., two “<”s)
but that is a rare occurrence

Proof by Calculation

Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: number, b: number): number => {
 const L: List = cons(a, cons(b, nil));
 if (a >= 0 && b >= 0)
 return sum(L);
 …

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”

find facts by reading along path
from top to return statement

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: number, y, number): number => {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in then (top) branch: “y	≤	-1”

x	+	y	

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: number, y, number): number => {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in then (top) branch: “y	≤	-1”

x	+	y	 ≤	x	+	-1	 	 	 	 since	y	≤	-1
	 	 <	x	+	0	 	 	 	 since	-1	<	0
	 	 =	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: number, y, number): number => {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in else (bottom) branch: “y	≥	0”

x	–	1		

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: number, y, number): number => {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in else (bottom) branch: “y	≥	0”

x	–	1		 <	x	+	0	 	 	 	 since	–1	<	0
	 	 =	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: number, y, number): number => {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Conditionals give us extra known facts
– get known facts from

1. specification
2. conditionals
3. constant declarations

find facts by reading along path
from top to the return statement

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x < y - 1
// Returns a number less than y and greater than x.
const f = (x: number, y, number): number => { .. };

– multiple known facts: x	:	ℤ,	y	:	ℤ,	and	x	<	y	–	1
– multiple claims to prove: x	<	r	and	r	<	y

where “r” is the return value

– requires two calculation blocks

Recall: Max With an Imperative Specification

// Returns a if a >= b and b if a < b
const max = (a: number, b, number): number => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

Level 0

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: number, b, number): number => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):
– then branch: a	≥	b		and		r	=	a
– else branch:	 	 a	<	b		and		r	=	b

Level 1

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: number, b, number): number => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Correctness of return in “then” branch:
– r	=	a holds so “r	=	a	or	r	=	b” holds,
– r	=	a holds so “r	≥	a”	holds, and

r	 =	a	 	 	 	 	
	 ≥	b	 	 	 	 	 since	a	≥	b

Know a	≥	b		and	 r	=	a

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: number, b, number): number => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Correctness of return in “else” branch:
– r	=	b holds so “r	=	a	or	r	=	b” holds,
– r	=	b holds so “r	≥	b”	holds, and
– r	≥	a	holds since we have r	>	a:

r	 =	b
	 	>	a	 	 	 	 	 since	a	<	b

Know a	<	b		and	 r	=	b

Sum of a List

// a and b must be integers
const f = (a: number, b: number): number => {
 const L: List = cons(a, cons(b, nil));
 const s: number = sum(L); // = a + b
 …
};

• Can prove the claim in the comments by calculation

sum(cons(a,	cons(b,	nil)))
	 =	a	+	sum(cons(b,	nil))	 	 	 def of sum
	 =	a	+	b	+	sum(nil)	 	 	 	 def of sum
	 =	a	+	b	 	 	 	 	 	 	 def of sum

func		sum(nil) :=		0
	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 for	any	x	∈	ℤ	and	any	L	∈	List

Sum of a List

// a and b must be integers
const f = (a: number, b: number): number => {
 const L: List = cons(a, cons(b, nil));
 const s: number = sum(L); // = a + b
 …
}

• Can prove the claim in the comments by calculation

sum(cons(a,	cons(b,	nil)))	=	…		=	a	+	b

• For which values of a and b does this hold?

holds	for	any	a	∈	ℤ	and	b	∈	ℤ

What We Have Proven

• We proved by calculation that

sum(cons(a,	cons(b,	nil)))	=	a	+	b

• This holds for any	a	∈	ℤ	and	b	∈	ℤ

• We have proven infinitely many facts
– sum(cons(3,	cons(5,	nil)))	=	8
– sum(cons(-5,	cons(2,	nil)))	=	-3
– …
– replacing all the ‘a’s and ‘b’s with those numbers

gives a calculation proving the “=” for those numbers

What We Have Proven

• We proved by calculation that

sum(cons(a,	cons(b,	nil)))	=	a	+	b	 	 	 	 for	any	a,	b	∈	ℤ

• We can use this fact for any a and b we choose
– our proof is a “recipe” that can be used for any a and b
– just as a function can be used with any argument values,

our proof can be used with any values for the “any” variables
(any values satisfying the specification)

– use “for any …” to make clear which things are variables

• This is called a “direct proof” of the “for any” claim

Binary Trees

	 	 type	Tree	:=		empty	|		node(x	:	ℤ,	L	:	Tree,	R	:	Tree)

• Inductive definition of binary trees of integers

node(1,	node(2,	empty,	empty),		node(3,	empty,	node(4,	empty,	empty))))

Binary Trees

1

2 3

4

Height of a Tree

	 type	Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Height of a tree: “maximum steps to get to a leaf”

1

2 3

4

1 1

2

1

2 3

0 1 1 2

Height of a Tree

	 type	Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Mathematical definition of height

 func		height(empty) :=		
	 	 	height(node(x,	L,	R))	 :=
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 						for	any	x	∈	ℤ	and	any	L,	R	∈	Tree1

2 3

4

2

1

0

0

Height of a Tree

	 type	Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Mathematical definition of height

 func		height(empty) :=		–1
	 	 	height(node(x,	L,	R))	 :=		1	+	max(height(L),	height(R))
	 	 	 	 	 	 	 	 for	any	x	∈	ℤ	and	any	L,	R	∈	Tree

1

2 3

4

2

1

0

0

Using Definitions in Calculations

func		height(empty) :=		–1
	 	 	height(node(x,	L,	R))	 :=		1	+	max(height(L),	height(R))
	 	 	 	 	 	 	 	 for	any	x	∈	ℤ	and	any	L,	R	∈	Tree

• Suppose “T	=	node(1,	empty,	node(2,	empty,	empty))”

• Prove that height(T)	=	1

height(T)	 =

Using Definitions in Calculations

func		height(empty) :=		–1
	 	 	height(node(x,	L,	R))	 :=		1	+	max(height(L),	height(R))
	 	 	 	 	 	 	 	 for	any	x	∈	ℤ	and	any	L,	R	∈	Tree

• Suppose “T	=	node(1,	empty,	node(2,	empty,	empty))”

• Prove that height(T)	=	1

height(T)	 =	height(node(1,	empty,	node(2,	empty,	empty))	 	 since T	=	…
	 	 =	1	+	max(height(empty),	height(node(2,	empty,	empty)))	 def of	height
	 	 =	1	+	max(-1,	height(node(2,	empty,	empty)))	 	 	 def of	height
	 	 =	1	+	max(-1,	1+	max(height(empty),	height(empty)))	 def of height
	 	 =	1	+	max(-1,	1+	max(-1,	-1))	 	 	 	 	 def of height	(x	2)
	 	 =	1	+	max(-1,	1+	-1)	 	 	 	 	 	 	 def of max
	 	 =	1	+	max(-1,	0)	 	 	 	 	 	 	 	
	 	 =	1	+	0	 	 	 	 	 	 	 	 	 def of max
	 	 =	1

Trees

• Trees are inductive types with a constructor that
has 2+ recursive arguments

• These come up all the time…
– no constructors with recursive arguments = “generalized enums”
– constructor with 1 recursive arguments = “generalized lists”
– constructor with 2+ recursive arguments = “generalized trees”

• Some prominent examples of trees:
– HTML: used to describe UI
– JSON: used to describe just about any data

Recall: HTML

• Nesting structure describes the tree

<div>
 <p id=”firstParagraph”> Some Text </p>

 <div>
 <p>Hello</p>
 </div>
</div>

div

p br div

p

Custom Tags

• The React library lets you write “custom tags”
– functions that return HTML

return (
 <div>
 <p>Hi, Alice!</p>

 <p>Hi, Bob!</p>
 </div>);

can become

return (
 <div>
 <SayHi name={“Alice”}/>

 <SayHi name={“Bob”}/>
 </div>);

Custom Tags

• The React library lets you write “custom tags”

return (
 <div>

 <SayHi name={“Alice”}/>
 <SayHi name={“Bob”}/>

 </div>);

makes two calls to this function

const SayHi = (props: {name: string}): JSX.Element => {
 return <p>Hi, {props.name}</p>;
};

– attributes are passed as a record argument (“props”)

Custom Tags

return (
 <div>

 <SayHi name={“Alice”} lang={“es”}/>
 <SayHi name={“Bob”}/>

 </div>);

makes two calls to this function

type SayHiProps = {name: string, lang?: string};

const SayHi = (props: SayHiProps): JSX.Element => {
 if (props.lang === “es”) {
 return <p>Hola, {props.name}</p>;
 } else {
 return <p>Hi, {props.name}</p>;
 }

};

Custom Tags

• The React library lets you write “custom tags”
– attributes are passed as a record argument (“props”)

• In render, React will paste the parts together:
<div>

 <SayHi name={“Alice”} lang={“es”}/>

 <SayHi name={“Bob”}/>
</div>

becomes
<div>

 <p>Hola, Alice!</p>
 <p>Hi, Bob!</p>

</div>

Custom Tags

• HTML literal syntax allows any tags

return (
 <div>

 <SayHi name={“Alice”} lang={“es”}/>
 <SayHi name={“Bob”}/>

 </div>);

– evaluates to a tree with two nodes with tag name “SayHi”
– this matters when testing (comes up in HW3)

• React’s render method is what calls SayHi
– HTML returned is substituted where the “SayHi” tag was

React Render

• React’s render pastes strings together

const name: String = “Fred”;
return <p>Hi, {name}</p>;

returns a different tree than

return <p>Hi, Fred</p>;

– in first tree, “p” tag has one child
– in second tree, “p” tag has two children
– render method concatenates text children into one string

• These differences matter for testing!

React Render

• React’s render pastes arrays into child list

const L = [Hi, Fred];
return <p>{L}</p>;

returns a different tree than

return <p>HiFred</p>;

– in first tree, “p” tag has one child
– in second tree, “p” tag has two children
– render method turns the first into the second

• These differences matter for testing!

