## CSE 331



## Basics of Reasoning

Kevin Zatloukal

## Administrivia

- Section tomorrow on HW3
- assignment released tomorrow night
- May be considerably more work than HW1-2
- going from ~5\% of grade up to ~8\%
(these percentages are still tentative)
- Start early!
- consider one problem per day


## HW2 Problem 5

- Given code uses tuple indexing
(a) /** @param $t$ consisting of a boolean and a non-negative integer */

```
const u = (t: [boolean, number]): number => {
```

    if (t[1] === 0) \{
                return 1;
        \} else if (t[1] === 1) \{
            return 2;
        \} else \{
        return \(3+u(t[0], t[1]-1)\);
    \}
    \};

- Understand why we don't allow this


## Review: Understanding Inductive Data Types

$$
\text { type List }:=\text { nil } \mid \text { cons(hd: } \mathbb{Z}, \text { tl: List) }
$$

- In Math, this is data

```
cons(1, cons(2, nil))
```

- In TypeScript, we represent it by this data

```
{kind: "cons", hd: 1, tl: {kind: "cons", hd: 2, tl: "nil"}}
```

- but we can create it with this code

```
cons(1, cons(2, nil))
```


## Formalizing Specifications

## Correctness Levels

| Level | Description | Testing | Tools | Reasoning |
| :---: | :---: | :---: | :---: | :---: |
| -1 | small \# of inputs | exhaustive |  |  |
| 0 | straight from spec | heuristics | type checking | code reviews |
| 1 | no mutation | " | libraries | calculation |
| 2 | local variable <br> mutation | " |  | " |

"straight from spec" requires us to have a formal spec!

## Formalizing a Specification

- Sometimes the instructions are written in English
- English is often imprecise or ambiguous
- First step is to "formalize" the specification:
- translate it into math with a precise meaning
- How do we tell if the specification is wrong?
- specifications can contain bugs
- we can only test our definition on some examples
(formal) reasoning can only be used after we have a formal spec
- Usually best to start by looking at some examples


## Definition of Sum of Values in a List

- Sum of a List: "add up all the values in the list"
- Look at some examples...

```
L
sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2,\operatorname{cons(3,nil))) 1+2+3}
```


## Definition of Sum of Values in a List

- Look at some examples...

```
L
nil
sum(L)
O
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2, cons(3, nil))) 1+2+3
```

- Mathematical definition

| func $\operatorname{sum}($ nil $)$ | $:=$ |
| ---: | :--- |
| $\operatorname{sum}(\operatorname{cons}(\mathrm{x}, \mathrm{S}))$ | $:=$ |

for any $\mathrm{x} \in \mathbb{Z}$
and any $S \in$ List

## Sum of Values in a List

- Mathematical definition of sum

```
func sum(nil) := 0
    sum(cons(x,S)) := x + sum(S) for any }x\in\mathbb{Z
    and any S E List
```

- Translation to TypeScript

```
const sum = (L: List): number => {
    if (L === nil) {
        return 0;
    } else {
        return L.hd + sum(L.tl);
    }
};

\section*{Definition of Reversal of a List}
- Reversal of a List: "same values but in reverse order"
- Look at some examples...
```

L
nil
cons(3, nil)
cons(2, cons(3, nil))
cons(1, cons(2, cons(3, nil)))

```
```

rev(L)
nil
cons(3, nil)
cons(3, cons(2, nil))
cons(3, cons(2, cons(1, nil)))

```

\section*{Definition of Reversal of a List}
- Look at some examples...
```

L
nil
cons(3, nil)
cons(2, cons(3, nil))
cons(1, cons(2, cons(3, nil)))

```
```

rev(L)
nil
cons(3, nil)
cons(3, cons(2, nil))
cons(3, cons(2, cons(1, nil)))

```
- Draw a picture?
reverse this too


\section*{Reversing A Lists}
- Draw a picture?
reverse this too

- Mathematical definition of rev
```

func rev(nil) :=

```
    \(\operatorname{rev}(\operatorname{cons}(x, S)) \quad:=\quad\) for any \(x \in \mathbb{Z}\) and
    any \(S \in\) List

\section*{Reversing A Lists}
- Mathematical definition of rev
\begin{tabular}{ll} 
func \(\operatorname{rev}(\) nil \()\) & \(:=\) nil \\
\(\operatorname{rev}(\operatorname{cons}(x, S))\) & \(:=\operatorname{concat}(\operatorname{rev}(S), \operatorname{cons}(x\), nil \()) \quad\) for any \(x \in \mathbb{Z}\) and \\
&
\end{tabular}
- Other definitions are possible, but this is simplest
- No help from reasoning tools until later
- only have testing and thinking about what the English means
- Always make definitions as simple as possible

\section*{Reasoning}

\section*{Correctness Levels}
\begin{tabular}{|c|c|c|c|c|}
\hline Level & Description & Testing & Tools & Reasoning \\
\hline-1 & small \# of inputs & exhaustive & & \\
\hline \(\mathbf{0}\) & straight from spec & heuristics & type checking & code reviews
\end{tabular} HW2

\section*{Facts}
- Basic inputs to reasoning are "facts"
- things we know to be true about the variables
- typically, "=" or " \(\leq "\)
```

// n must be a natural number
const f = (n: number): number => {
const m = 2*n;
return (m + 1) * (m - 1);
};

- At the return statement, we know these facts:
$-\mathrm{n} \in \mathbb{N}$
(or $n \in \mathbb{Z}$ and $n \geq 0$ )
$-\mathrm{m}=2 \mathrm{n}$


## Facts

- Basic inputs to reasoning are "facts"
- things we know to be true about the variables
- typically, "=" or " $\leq$ "

```
// n must be a natural number
const f = (n: number): number => {
        const m = 2*n;
        return (m + 1) * (m - 1);
    };
```

- No need to include the fact that $\mathbf{n}$ is a number ( $\mathrm{n} \in \mathbb{R}$ )
- that is true, but the type checker takes care of that
- no need to repeat reasoning done by the type checker


## Implications

- We can use the facts we know to prove more facts
- if we can prove R using facts P and Q , we say that R "follows from" or "is implied by" P and Q
- proving this fact is proving an "implication"
- Proving implications is necessary for checking correctness


## Checking Correctness

- Specifications include two kinds of facts
- promised facts about the inputs (P and Q)
- required facts about the outputs (R)
- Checking correctness is just proving implications
- proving facts about the return values
- we need to use reasoning to do that


## Implications

- We can use the facts we know to prove more facts
- if we can prove $R$ using facts $P$ and $Q$, we say that R "follows from" or "is implied by" P and Q
- Proving implications is the core skill of reasoning
- other techniques output implications for us to prove
- The techniques we will learn are
- proof by calculation
- proof by cases
- structural induction \} gives us two implications, each usually proven by calculation


## Proof by Calculation

- Proves an implication
- fact to be shown is an equation or inequality
- Uses known facts and definitions
- latter includes, e.g., the fact that len(nil) $=0$


## Example Proof by Calculation

- Given $x=y$ and $z \leq 10$, prove that $x+z \leq y+10$
- show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$
x+z
$$

## Example Proof by Calculation

- Given $x=y$ and $z \leq 10$, prove that $x+z \leq y+10$
- show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$
\begin{array}{lll}
x+z & =y+z & \text { since } x=y \\
& \leq y+10 & \\
\text { since } z \leq 10
\end{array}
$$

- "calculation block", includes explanations in right column proof by calculation means using a calculation block


## Calculation Blocks

- Chain of "=" shows first = last

$$
\begin{aligned}
a & =b \\
& =c \\
& =d
\end{aligned}
$$

- proves that $\mathrm{a}=\mathrm{d}$
- all 4 of these are the same number


## Calculation Blocks

- Chain of "=" and " $\leq$ " shows first $\leq$ last

$$
\begin{aligned}
x+z & =y+z & & \text { since } x=y \\
& \leq y+10 & & \text { since } z \leq 10 \\
& =y+3+7 & & \\
& \leq w+7 & & \text { since } y+3 \leq w
\end{aligned}
$$

- each number is equal or strictly larger that previous
last number is strictly larger than the first number
- analogous for " $\geq$ "


## Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: number, y, number): number => {
    return }x+y
};
```

- Known facts " $x \geq 1$ " and " $y \geq 1$ "
- Correct if the return value is a positive integer

$$
x+y
$$

## Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts "x $\geq 1$ " and " $y \geq 1$ "
- Correct if the return value is a positive integer

$$
\begin{array}{rlrl}
x+y & \geq x+1 & & \text { since } y \geq 1 \\
& =1+1 & & \text { since } x \geq 1 \\
& =2 & \\
& \geq 1 &
\end{array}
$$

- calculation shows that $x+y \geq 1$


## Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts "x $\in \mathbb{Z}$ " and " $y \in \mathbb{Z}$ "
- Correct if the return value is a positive integer
- we know that " $x+y$ " is an integer
- should be second nature from Java programming
- unless there is division involved, we will skip this


## Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts " $x \geq 9$ " and " $y \geq-8$ "
- Correct if the return value is a positive integer

$$
x+y
$$

## Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts " $x \geq 9$ " and " $y \geq-8$ "
- Correct if the return value is a positive integer

$$
\begin{array}{rlrl}
x+y & & \geq x+-8 & \\
& \text { since } y \geq-8 \\
& \geq 9-8 & & \text { since } x \geq 9 \\
& =1 & &
\end{array}
$$

## Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts " $x \geq 4$ " and " $y \geq 5$ "
- Correct if the return value is $\mathbf{1 0}$ or larger

$$
x+y
$$

## Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts " $x \geq 4$ " and " $y \geq 5$ "
- Correct if the return value is $\mathbf{1 0}$ or larger

$$
\begin{array}{rlrl}
x+y & \geq x+5 & & \text { since } y \geq 5 \\
& \geq 4+5 & & \text { since } x \geq 4 \\
& =9 &
\end{array}
$$

## Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: number, y, number): number => {
    return x + y;
};
```

- Known facts "x > 8" and "y > -9"
- Correct if the return value is a positive integer

$$
\begin{aligned}
x+y & & >x+-9 & \\
& >8-9 & & \text { since } y>-9 \\
& =-1 & & \text { since } x>8
\end{aligned}
$$

proof doesn't work because the proof is wrong
warning: avoid using ">" (or "<") multiple times in a calculation block

## Using Definitions in Calculations

- Most useful with function calls
- cite the definition of the function to get the return value
- For example

| func sum(nil) | $:=0$ |  |
| :--- | :--- | :--- |
| $\operatorname{sum}(\operatorname{cons}(x, L))$ | $:=x+\operatorname{sum}(L)$ |  |
|  |  | for any $x \in \mathbb{Z}$ |
| and any $L \in$ List |  |  |

- Can cite facts such as
$-\operatorname{sum}($ nil $)=0$
$-\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, n i l)))=a+\operatorname{sum}(\operatorname{cons}(b, n i l))$


## Using Definitions in Calculations

| func sum(nil) | $:=0$ |  |
| :--- | :--- | :--- |
| $\operatorname{sum}(\operatorname{cons}(x, L))$ | $:=x+\operatorname{sum}(L)$ | for any $x \in \mathbb{Z}$ |
|  |  | and any $L \in$ List |

- Know "a $\geq 0$ ", " $b \geq 0$ ", and " $L=\operatorname{cons(a,~cons(b,~nil))"~}$
- Prove the "sum $(\mathrm{L})$ " is non-negative

```
sum(L)
```


## Using Definitions in Calculations

| func sum(nil) | $:=0$ |  |
| :--- | :--- | :--- |
| $\operatorname{sum}(\operatorname{cons}(x, L))$ | $:=x+\operatorname{sum}(L)$ | for any $x \in \mathbb{Z}$ |
|  |  | and any $L \in$ List |

- Know "a $\geq 0$ ", "b $\geq 0$ ", and " $L=\operatorname{cons(a,~cons(b,~nil))"~}$
- Prove the "sum $(\mathrm{L})$ " is non-negative

```
sum(L) = sum(cons(a, cons(b, nil))
    =a+\operatorname{sum(cons(b, nil))}
    =a+b+sum(nil)
    =a+b
    \geq0+b
    \geq0
since L = cons(a, cons(b, nil))
def of sum
def of sum
def of sum
since a \geq0
since b \geq0
```

