
Basics of Reasoning
Kevin Zatloukal

CSE 331

Administrivia

• Section tomorrow on HW3
– assignment released tomorrow night

• May be considerably more work than HW1–2
– going from ~5% of grade up to ~8%

(these percentages are still tentative)

• Start early!
– consider one problem per day

HW2 Problem 5

• Given code uses tuple indexing

• Understand why we don’t allow this

Review: Understanding Inductive Data Types

	 	 	 type	List	:=		nil		|		cons(hd:	ℤ,	tl:	List)

• In Math, this is data

cons(1,	cons(2,	nil))

• In TypeScript, we represent it by this data

{kind: “cons”, hd: 1, tl: {kind: “cons”, hd: 2, tl: “nil”}}

– but we can create it with this code

cons(1, cons(2, nil))

Formalizing Specifications

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

“straight from spec” requires us to have a formal spec!

Formalizing a Specification

• Sometimes the instructions are written in English
– English is often imprecise or ambiguous

• First step is to “formalize” the specification:
– translate it into math with a precise meaning

• How do we tell if the specification is wrong?
– specifications can contain bugs
– we can only test our definition on some examples

(formal) reasoning can only be used after we have a formal spec

• Usually best to start by looking at some examples

Definition of Sum of Values in a List

• Sum of a List: “add up all the values in the list”

• Look at some examples…

L sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2, cons(3, nil))) 1+2+3
… …

Definition of Sum of Values in a List

• Look at some examples…

L sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2, cons(3, nil))) 1+2+3
… …

• Mathematical definition

 func		sum(nil) :=		
	 	 	sum(cons(x,	S))	 :=		 	 	 	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	S	∈	List

Sum of Values in a List

• Mathematical definition of sum

 func		sum(nil) :=		0
	 	 	sum(cons(x,	S))	 :=		x	+	sum(S)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	S	∈	List

• Translation to TypeScript

const sum = (L: List): number => {
 if (L === nil) {
 return 0;
 } else {
 return L.hd + sum(L.tl);
 }

};

Level 0

Definition of Reversal of a List

• Reversal of a List: “same values but in reverse order”

• Look at some examples…

L rev(L)
nil nil
cons(3, nil) cons(3, nil)
cons(2, cons(3, nil)) cons(3, cons(2, nil))
cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))
… …

Definition of Reversal of a List

• Look at some examples…

L rev(L)
nil nil
cons(3, nil) cons(3, nil)
cons(2, cons(3, nil)) cons(3, cons(2, nil))
cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

• Draw a picture?

1 2 3

move 1 to end

reverse this too

Reversing A Lists

• Draw a picture?

• Mathematical definition of rev

func		rev(nil) :=		 	 	 	 	
	 	rev(cons(x,	S))	 :=		 	 	 	 	 	 	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S	∈	List

1 2 3

move 1 to end

reverse this too

Reversing A Lists

• Mathematical definition of rev

func		rev(nil) :=		nil	 	 	 	 	
	 	rev(cons(x,	S))	 :=		concat(rev(S),	cons(x,	nil))	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S	∈	List

• Other definitions are possible, but this is simplest

• No help from reasoning tools until later
– only have testing and thinking about what the English means

• Always make definitions as simple as possible

Reasoning

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

HW2

HW3
HW4

HW6

HW7

Facts

• Basic inputs to reasoning are “facts”
– things we know to be true about the variables
– typically, “=” or “≤”

// n must be a natural number
const f = (n: number): number => {
 const m = 2*n;
 return (m + 1) * (m – 1);
};

• At the return statement, we know these facts:
– n	∈	ℕ	 	 	 (or	n	∈	ℤ	and	n	≥	0)
– m	=	2n

find facts by reading along path
from top to return statement

Facts

• Basic inputs to reasoning are “facts”
– things we know to be true about the variables
– typically, “=” or “≤”

// n must be a natural number
const f = (n: number): number => {
 const m = 2*n;
 return (m + 1) * (m – 1);
};

• No need to include the fact that n is a number (n	∈	ℝ)
– that is true, but the type checker takes care of that
– no need to repeat reasoning done by the type checker

Implications

• We can use the facts we know to prove more facts
– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q
– proving this fact is proving an “implication”

• Proving implications is necessary for checking correctness

Checking Correctness

• Specifications include two kinds of facts
– promised facts about the inputs (P and Q)
– required facts about the outputs (R)

• Checking correctness is just proving implications
– proving facts about the return values
– we need to use reasoning to do that

Implications

• We can use the facts we know to prove more facts
– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q

• Proving implications is the core skill of reasoning
– other techniques output implications for us to prove

• The techniques we will learn are
– proof by calculation
– proof by cases
– structural induction gives us two implications,

each usually proven by calculation

Proof by Calculation

• Proves an implication
– fact to be shown is an equation or inequality

• Uses known facts and definitions
– latter includes, e.g., the fact that len(nil)	=	0

Example Proof by Calculation

• Given x	=	y and z	≤	10, prove that x	+	z	≤	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z	
	 	

Example Proof by Calculation

• Given x	=	y and z	≤	10, prove that x	+	z	≤	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z	 =	y	+	z	 	 	 	 since x	=	y
	 	 ≤	y	+	10		 	 	 since z	≤	10	 	

– “calculation block”, includes explanations in right column
proof by calculation means using a calculation block

Calculation Blocks

• Chain of “=” shows first = last

a	 =	b
	 =	c	 	 	 	 	 	
	 =	d

– proves that a	=	d
– all 4 of these are the same number

Calculation Blocks

• Chain of “=” and “≤” shows first ≤ last

x	+	z	 =	y	+	z	 	 	 	 since x	=	y
	 	 ≤	y	+	10		 	 	 since z	≤	10
	 	 =	y	+	3	+	7
	 	 ≤	w	+	7	 	 	 	 since y	+	3	≤	w	

– each number is equal or strictly larger that previous
last number is strictly larger than the first number

– analogous for “≥”

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	≥	1” and “y	≥	1”

• Correct if the return value is a positive integer

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	≥	1” and “y	≥	1”

• Correct if the return value is a positive integer

x	+	y	 ≥	x	+	1	 	 	 	 since y	≥	1
	 	 =	1	+	1	 	 	 	 since	x	≥	1
	 	 =	2
	 	 ≥	1	 	 	 	 	

– calculation shows that x	+	y	≥	1

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	∈	ℤ” and “y	∈	ℤ”

• Correct if the return value is a positive integer
– we know that “x + y” is an integer
– should be second nature from Java programming
– unless there is division involved, we will skip this

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	≥	9” and “y	≥	–8”

• Correct if the return value is a positive integer

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	≥	9” and “y	≥	–8”

• Correct if the return value is a positive integer

x	+	y	 ≥	x	+	-8	 	 	 	 since y	≥	-8
	 	 ≥	9	–	8	 	 	 	 since	x	≥	9
	 	 =	1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	≥	4” and “y	≥	5”

• Correct if the return value is 10 or larger

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	≥	4” and “y	≥	5”

• Correct if the return value is 10 or larger

x	+	y	 ≥	x	+	5	 	 	 	 since y	≥	5
	 	 ≥	4	+	5	 	 	 	 since	x	≥	4
	 	 =	9

proof doesn’t work because the code is wrong!

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: number, y, number): number => {
 return x + y;
};

• Known facts “x	>	8” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y	 >	x	+	-9	 	 	 	 since y	>	-9
	 	 >	8	-	9	 	 	 	 since	x	>	8
	 	 =	-1

warning: avoid using “>” (or “<“) multiple times in a calculation block

proof doesn’t work because the proof is wrong

Using Definitions in Calculations

• Most useful with function calls
– cite the definition of the function to get the return value

• For example

 func		sum(nil) :=		0
	 	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Can cite facts such as
– sum(nil)	=	0
– sum(cons(a,	cons(b,	nil)))	=	a	+	sum(cons(b,	nil))

second case of definition with x	=	a and L	=	cons(b,	nil)

Using Definitions in Calculations

 func		sum(nil) :=		0
	 	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Know “a	≥	0”, “b	≥	0”, and “L	=	cons(a,	cons(b,	nil))”

• Prove the “sum(L)” is non-negative

sum(L)	

Using Definitions in Calculations

 func		sum(nil) :=		0
	 	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Know “a	≥	0”, “b	≥	0”, and “L	=	cons(a,	cons(b,	nil))”

• Prove the “sum(L)” is non-negative

sum(L)	 =	sum(cons(a,	cons(b,	nil))	 	 since L	=	cons(a,	cons(b,	nil))
	 	 =	a	+	sum(cons(b,	nil))	 	 	 def of	sum
	 	 =	a	+	b	+	sum(nil)	 	 	 	 def of	sum
	 	 =	a	+	b	 	 	 	 	 	 def of sum
	 	 ≥	0	+	b	 	 	 	 	 	 since a	≥	0
	 	 ≥	0	 	 	 	 	 	 	 since b	≥	0

