
Inductive Data Types
Kevin Zatloukal

CSE 331

Administrivia

• Working on HW2 on your own

• Understand why we have the rules we do
– why you need 2 tests per subdomain
– why you need to test boundary cases
– why you need 0–1–many recursive calls

• Starting HW3 material in lecture
– full math notation linked under this lecture

Inductive Data Types

• Create new types using records, tuples, and unions
– very useful but limited

can only create types that are “small” in some sense

• Missing one more way of defining types
– arguably the most important

• One critical element is missing: recursion
Java classes can have fields of same type, but records cannot

• Inductive data types are defined recursively
– combine union with recursion

Inductive Data Types

• Describe a set by ways of creating its elements
– each is a “constructor”

type	T	:=		C(x	:	ℤ)		|		D(x	:	ℤ,		y	:	T)

– second constructor is recursive
– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

C(1)
D(2,	C(1))
D(3,	D(2,	C(1)))

in math, these are not function calls

Inductive Data Types

• Each element is a description of how it was made

C(1)
D(2,	C(1))
D(3,	D(2,	C(1)))

• Equal when they were made exactly the same way

– C(1)	≠	C(2)
– D(2,	C(1))	≠	D(3,	C(1))
– D(2,	C(1))	≠	D(2,	C(2))

– D(1,	D(2,	C(3)))	=	D(1,	D(2,	C(3)))

Natural Numbers

 type	ℕ		:=		zero		|		succ(n	:	ℕ)

• Inductive definition of the natural numbers

zero		 	 	 	 	 	 	 0
succ(zero)	 	 	 	 	 	 1
succ(succ(zero))	 	 	 	 	 2
succ(succ(succ(zero)))		 	 	 3

The most basic set we have is defined inductively!

Even Natural Numbers

 type	𝔼	:=		zero		|		two-more(n	:	𝔼)

• Inductive definition of the even natural numbers

zero		 	 	 	 	 	 	 	 	 0
two-more(zero)	 	 	 	 	 	 	 2
two-more(two-more(zero))		 	 	 	 4
two-more(two-more(two-more(zero)))	 	 6

much better notation

	 	 	 type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Inductive definition of lists of integers

nil	 	 	 	 	 	 	 	 ≈	[]
cons(3,	nil)	 	 	 	 	 	 ≈	[3]
cons(2,	cons(3,	nil))	 	 	 	 ≈	[2,	3]
cons(1,	cons(2,	cons(3,	nil)))	 	 ≈	[1,	2,	3]

Lists

array notation

1 2 3

“Lists are the original data structure for functional programming,
 just as arrays are the original data structure of imperative programming”

Ravi Sethi

we will work with lists in HW3+ and arrays HW7+

Inductive Data Types in TypeScript

• TypeScript does not natively support inductive types
– some “functional” languages do (e.g., Ocaml and ML)

• We will cobble them together…

Literal Types

• A literal type includes only that literal

const x: “red” = “red”;
const y: 1 = 1;

• This is useful for creating small sets

type Color = “red” | “green” | “blue”;
const c: Color = “red”;

• Java works around this with “enums”
– objects that “represent” red, green, and blue

example of a “design pattern”

Type Narrowing with Records

• Use a literal field to distinguish records types
– require the field to have one specific value
– called a “tag” field

cleanest way to make unions of records

type T1 = {kind: “T1”, a: number, b: number};
type T2 = {kind: “T2” c: number, b: string}

const x: T1 | T2 = …;
if (x.kind === “T1”) { // legal for either type
 console.log(x.a); // must be T1… x.a is a number
} else {
 console.log(x.b); // must be T2… x.b is a string
}

Inductive Data Type Design Pattern

type	T		:=		C(x	:	ℤ)		|	D(x	:	ℤ,	t	:	T)

• Implement in TypeScript as

type T = {kind: “C”, x: number}
 | {kind: “D”, x: number, t: T};

• A design pattern
– work around the limitations of TypeScript (no inductive types)

• Will use a simpler representation with no arguments
– rather than {kind: “A”}, we’ll use just “A”

Inductive Data Type Design Pattern

type	T		:=		A		|		B		|		C(x	:	ℤ)		|	D(x	:	ℤ,	t	:	T)

• Implement in TypeScript as

type T = “A”
 | “B”
 | {kind: “C”, x: number}
 | {kind: “D”, x: number, t: T};

• TypeScript’s narrowing still works well
– if t !== “A” and t !== “B”, then t.kind makes sense

(and it is either “C” or “D”)

Inductive Data Types in TypeScript

	 	 	 type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Becomes the following type in TypeScript

type List = “nil”
 | {kind: “cons”, hd: number, tl: List};

– fields should also be “readonly”

Inductive Data Types in TypeScript

• Make this look more like math notation…

type List = “nil”
 | {kind: “cons”, hd: number, tl: List};

const nil: List = “nil”;

const cons = (hd: number, tl: List): List => {
 return {kind: ”cons”, hd: hd, tl: tl};
}

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: List = “nil”;

const cons = (hd: number, tl: List): List => { .. };

• Can now write code like this:

const L: List = cons(1, cons(2, nil));

if (L === nil) {
 return R;
} else {
 return cons(L.hd, R); // head of L followed by R
}

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: List = “nil”;

const cons = (hd: number, tl: List): List => { .. };

• Still not perfect:
– JS “===” (references to same object) does not match “=”

cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!

– need to define an equal function for this

Inductive Data Types in TypeScript

• Objects are equal if they were built the same way

type List = “nil”
 | {kind: “cons”, hd: number, tl: List};

const equal = (L: List, R: List): boolean => {
 if (L === nil) {
 return R === nil;
 } else {
 if (R === nil) {
 return false;
 } else {
 return equal(L.tl, R.tl) && L.hd === R.hd;
 }

 }

};

Functions

Code Without Mutation

• Saw all types of code without mutation:
– straight-line code
– conditionals
– recursion

• This is all that there is

• Saw TypeScript syntax for these already…

Code Without Mutation

Example function with all three types

 // n must be a non-negative integer
 const f = (n: number): number => {
 if (n === 0) {
 return 1;
 } else {
 return 2 * f(n – 1);
 }

 };

What does this compute? 2n

Recall: Natural Numbers

 type	ℕ	:=		zero		|		succ(prev:	ℕ)

• Inductive definition of the natural numbers

zero		 	 	 	 	 	 	 0
succ(zero)	 	 	 	 	 	 1
succ(succ(zero))	 	 	 	 	 2
succ(succ(succ(zero)))		 	 	 3

Recall: Natural Numbers

 type	ℕ	:=		zero		|		succ(prev:	ℕ)

• Potential definition in TypeScript

type Nat = “zero” | {kind: “succ”, prev: Nat};

const zero: Nat = “zero”;

const succ = (prev: Nat): Nat => {
 return {kind: ”succ”, prev: prev};
};

Induction on Natural Numbers

Could use a type that only allows natural numbers:

 const f = (n: Nat): number => {
 if (n === zero) {
 return 1;
 } else {
 return 2 * f(n.prev);
 }
 };

Cleaner definition of the function (though inefficient)

n.prev represents “n – 1”

Structural Recursion

• Inductive types: build new values from existing ones
– only zero exists initially
– build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

• Structural recursion: recurse on smaller parts
– call on n recurses on n.prev

n.prev is the argument to the constructor (succ) used to create n

– guarantees no infinite loops!
limit to structural recursion whenever possible

• We will try to restrict ourselves to structural recursion
– for both math and TypeScript

Defining Functions in Math

• Saw math notation for defining functions, e.g.:

	 func	f(n)		:=		2n	+	1	 for	any	n	:	ℕ

• We need recursion to define interesting functions
– we will primarily use structural recursion

• Inductive types fit esp. well with pattern matching
– every object is created using some constructor
– match based on which constructor was used (last)

Length of a List

	 	 	 type	List	:=		nil		|		cons(hd:	ℤ,	tl:	List)

• Mathematical definition of length

 func		len(nil) :=		0
	 	 	len(cons(x,	S))	 :=		1	+	len(S)		 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	S	∈	List

– any list is either nil or cons(x, L) for some x and L
– cases are exclusive and exhaustive

Length of a List

• Mathematical definition of length

 func		len(nil) :=		0
	 	 	len(cons(x,	S))	 :=		1	+	len(S)		 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Translation to TypeScript

const len = (L: List): number => {
 if (L === nil) {
 return 0;
 } else {
 return 1 + len(L.tl);
 }

};

Level 0
straight from the spec

Concatenating Two Lists

• Mathematical definition of concat(L,	R)

func		concat(nil, R) :=		R	 	 	 	 	 for	any	R	∈	List
	 	concat(cons(x,	S),	R)	 :=		cons(x,	concat(S,	R))	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S,	R	∈	List

– concat(L,	R) defined by pattern matching on L (not R)

1 2 3 4 5 6

L

x S

R

Concatenating Two Lists

• Mathematical definition of concat(L,	R)

func		concat(nil, R) :=		R	 	 	 	 	 for	any	R	∈	List
	 	concat(cons(x,	S),	R)	 :=		cons(x,	concat(S,	R))	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 			 any	S,	R	∈	List

• Translation to TypeScript

const concat = (L: List, R: List): List => {
 if (L === nil) {
 return R;
 } else {
 return cons(L.hd, concat(L.tl, R));
 }
};

Level 0

