CSE 331

Inductive Data Types

Kevin Zatloukal

Administrivia

* Working on HW2 on your own

 Understand why we have the rules we do
— why you need 2 tests per subdomain
— why you need to test boundary cases
— why you need O-1-many recursive calls

e Starting HW3 material in lecture
— full math notation linked under this lecture

Inductive Data Types

* Create new types using records, tuples, and unions

— very useful but limited
can only create types that are “small” in some sense

* Missing one more way of defining types
— arguably the most important

One critical element is missing: recursion

Java classes can have fields of same type, but records cannot

Inductive data types are defined recursively
— combine union with recursion

Inductive Data Types

 Describe a set by ways of creating its elements
— each is a “constructor”

typeT:= C(x:Z) | DX:Z, y:T)

— second constructor is recursive

— can have any number of arguments (even none)
will leave off the parentheses when there are none

 Examples of elements

C(D)
D(2, C(1)) in math, these are not function calls
D(3,D(2,C(1)))

Inductive Data Types

 Each element is a description of how it was made

C(D)
D(2, C(1))
D(3,D(2, C(1)))

 Equal when they were made exactly the same way

— C(1) #C(2)
— D(2,C(1)) # D(3, C(1))
— D(2,C(1)) # D(2, C(2))

— D(1,D(2,C(3))) =D(1,D(2,C(3)))

Natural Numbers

type N := zero | succ(n: N)

 Inductive definition of the natural numbers

Zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Even Natural Numbers

type E := zero | two-more(n : E)

 |nductive definition of the even natural numbers

Z€ro

two-more(zero
() much better notation

two-more(two-more(zero))

N S~ N O

two-more(two-more(two-more(zero)))

Lists

type List := nil | cons(x:Z, L: List)

* Inductive definition of lists of integers

nil ~ (]
cons(3, nil) ~ [3] _
_ array notation
cons(2, cons(3, nil)) ~ (2, 3]
cons(1, cons(2, cons(3, nil))) ~ [1, 2, 3]

“Lists are the original data structure for functional programming,
just as arrays are the original data structure of imperative programming”

Ravi Sethi

we will work with lists in HW3+ and arrays HW7+

Inductive Data Types in TypeScript

* TypeScript does not natively support inductive types
— some “functional” languages do (e.g., Ocaml and ML)

* We will cobble them together...

Literal Types

* A literal type includes only that literal

const x: “red” = “red”;

const y: 1 = 1;

* This is useful for creating small sets

type Color = “red” | “green” | “blue”;

const c: Color = “red”;

 Java works around this with “enums”

— objects that “represent” red, green, and blue
example of a “design pattern”

Type Narrowing with Records

* Use a literal field to distinguish records types
— require the field to have one specific value

— called a “tag” field
cleanest way to make unions of records

type Tl = {kind: “T1”, a: number, b: number};
type T2 = {kind: “T2” c: number, b: string}

const x: T1 | T2 = ..;

if (x.kind === “T1”) { // legal for either type
console.log(x.a); // must be Tl.. x.a is a number
} else {

console.log(x.b); // must be T2.. x.b is a string

Inductive Data Type Design Pattern

typeT (= C(x:Z) |D(x:Z,t:T)

 Implement in TypeScript as

type T = {kind: “C”, x: number}
| {kind: “D”, x: number, t: T};

* A design pattern
— work around the limitations of TypeScript (no inductive types)

* Will use a simpler representation with no arguments
— rather than {kind: “A”}, we’ll use just “a”

Inductive Data Type Design Pattern

typeT := A | B | C(x:Z) |D(x:Z,t:T)

 Implement in TypeScript as

{kind: “C”, x: number}
{kind: “D”, x: number, t: T};

* TypeScript's narrowing still works well
— ift !'== *A”and t !== “B”, then t.kind makes sense

(and it is either “c” or “D”)

Inductive Data Types in TypeScript

type List := nil | cons(x:Z, L: List)

 Becomes the following type in TypeScript

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

— fields should also be “readonly”

Inductive Data Types in TypeScript

« Make this look more like math notation...

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

const nil: List = “nil”;

const cons = (hd: number, tl: List): List => {
return {kind: ”“cons”, hd: hd, tl: tl};

Inductive Data Types in TypeScript

* Make this look more like math notation...
const nil: List = “nil”;

const cons = (hd: number, tl: List): List => { .. };

e Can now write code like this:
const L: List = cons(l, cons(2, nil));

if (L === nil) {
return R;
} else {
return cons(L.hd, R); // head of L followed by R

Inductive Data Types in TypeScript

* Make this look more like math notation...
const nil: List = “nil”;

const cons = (hd: number, tl: List): List => { .. };

 Still not perfect:
— JS “===" (references to same object) does not match “="

cons(l, cons (2, nil)) === cons(l, cons (2, nil)) // false!

— need to define an equal function for this

Inductive Data Types in TypeScript

* Objects are equal if they were built the same way

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

const equal = (L: List, R: List): boolean => {
if (L === nil) {
return R === nil;
} else {
if (R === nil) {

return false;
} else {
return equal (L.tl, R.tl) && L.hd === R.hd;

s

Functions

Code Without Mutation

« Saw all types of code without mutation:
— straight-line code
— conditionals
— recursion

 This is all that there is

 Saw TypeScript syntax for these already...

Code Without Mutation

Example function with all three types

// n must be a non-negative integer

const £ = (n: number): number => {
if (n === 0) {
return 1;
} else {
return 2 * f(n - 1);

Y

What does this compute? 2"

Recall: Natural Numbers

type N := zero | succ(prev: N)

 Inductive definition of the natural numbers

Zero
succ(zero)
succ(succ(zero))

w N = O

succ(succ(succ(zero)))

Recall: Natural Numbers

type N := zero | succ(prev: N)

* Potential definition in TypeScript

type Nat = “zero” | {kind: “succ”, prev: Nat};
const zero: Nat = “zero”;
const succ = (prev: Nat): Nat => {

return {kind: ”“succ”, prev: previ};

s

Induction on Natural Numbers

Could use a type that only allows natural numbers:

const £ = (n: Nat): number => {
1f (n === zero) {
return 1;
} else {

return 2 * f(n.prev);
} n.prev represents “n - 1”

Y

Cleaner definition of the function (though inefficient)

Structural Recursion

* Inductive types: build new values from existing ones
— only zero exists initially
— build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

e Structural recursion: recurse on smaller parts

— call on n recurses on n.prev
n.prev is the argument to the constructor (succ) used to create n

— guarantees no infinite loops!
limit to structural recursion whenever possible

* We will try to restrict ourselves to structural recursion
— for both math and TypeScript

Defining Functions in Math

 Saw math notation for defining functions, e.g.:

funcf(n) := 2n+1 foranyn:N

* We need recursion to define interesting functions
— we will primarily use structural recursion

* Inductive types fit esp. well with pattern matching
— every object is created using some constructor
— match based on which constructor was used (last)

Length of a List

type List := nil | cons(hd: Z, tl: List)

 Mathematical definition of length

func len(nil) =0
len(cons(x, S)) 1+ len(S) forany x € Z
and any S € List

— any list is either nil or cons(x, L) for some x and L
— cases are exclusive and exhaustive

Length of a List

 Mathematical definition of length

func len(nil) =0
len(cons(x, S)) 1+ len(S) forany x € Z
and any L € List

* Translation to TypeScript

const len = (L: List): number => {
if (L === nil) {
return 0;
} else { Level O
return 1 + len(L.tl); straight from the spec

s

Concatenating Two Lists

* Mathematical definition of concat(L, R)

func concat(nil, R) R for any R € List

cons(x, concat(S,R)) foranyx € Z and
any S, R € List

concat(cons(x, S), R)

— concat(L, R) defined by pattern matching on L (not R)

-
-

Concatenating Two Lists

* Mathematical definition of concat(L, R)

func concat(nil, R) = R for any R € List
concat(cons(x, S), R) := cons(x, concat(S,R)) forany x € Z and
any S, R € List
* Translation to TypeScript
const concat = (L: List, R: List): List => {
if (L === nil) {
} else {

return cons(L.hd, concat(L.tl, R));

s

