
Specifications
Kevin Zatloukal

CSE 331

Reminders

• HW1 due by 11pm tonight

• Section tomorrow starts HW2
– HW2 itself released Thursday night

• Summary of math notation on website

• Small amount of testing material on Friday

Last Time: Correctness Levels of Difficulty

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

Math Notation

Last Time: Basic Data Types in Math

• In math, the basic data types are “sets”
– sets are collections of objects called elements
– write x ∈	S to say that “x” is an element of set “S”,

and x ∉	S to say that it is not.

• Examples:
 x ∈	ℤ x is an integer
 x ∈	ℕ x is a non-negative integer (natural)
 x ∈	ℝ x is a real number
 x ∈	𝔹 x is T or F (boolean)
 x ∈	𝕊	 x is a character
 x ∈	𝕊* x is a string

non-standard names

Last Time: Ways to Create New Types In Math

• Union Types 	 𝕊*		∪		ℕ
– contains every object in either (or both) of those sets
– e.g., all strings and natural numbers

• If x	∈	ℕ	∪	𝕊*, then x could be a natural or string

• Two sets can contain common elements
– in this case, the sets are disjoint

Ways to Create New Types in TypeScript

• Union Types string | number
– can be either one of these

• Can also include literal values in the union!

const x: 1 | 2 | 3 = …;

// know that x is either 1, 2, or 3

Compound Types In Math

• Compound types combine multiple data types
– multiple ways build them

• Record Types {x	:	ℕ,		y	:	ℕ}
– record with fields “x” and “y” each containing a number
– e.g., {x:	3,	y:	5}

• Note that {x:	3,	y:	5}	=	{y:	5,	x:	3}
– field names matter, not order
– (also, “=“ means same values)

Record Types in TypeScript

• Record Types {x: number, y: number}
– anything with at least fields “x” and “y”

• Retrieve a part by name:

const t: {x: number, y: number} = … ;
console.log(t.x);

– can also use a type alias

type T = {x: number, y: number};
const t: T = … ;
console.log(t.x);

Optional Fields in TypeScript

• Records can have optional fields

type T = {x: number, y?: number};

const t: T = {x: 1};

– type of “ t.y ” is “ number | undefined ”

• Functions can have optional arguments

const f = (a: number, b?: number): number => {
 console.log(b);

};

– type of “ b ” is “ number | undefined ”

Compound Types In Math

• Record Types {x	:	ℕ,		y	:	ℕ}
– record with fields “x” and “y” each containing a number
– e.g., {x:	3,	y:	5}

• Tuple Types ℕ ⨉ ℕ
– pair of two numbers, e.g., (5,	7)
– can do tuples of 3, 4, or more elements also

• Mostly equivalent alternatives
– both let us put parts together into a larger object
– record distinguishes parts by name
– tuple distinguishes parts by order

Tuple Types in TypeScript

• Tuple Types [number, number]

• At runtime, actually an array of length 2
– could retrieve the second part using “t[1]” syntax

easy to make mistakes here!

– but would prefer to match the math more closely
331 coding conventions require this!

• How would we do this in math?
– we must give names to the parts to refer to them
– (aside: this is how function arguments work too)

Retrieving Part of a Tuple

• To refer to the parts, we must give them names

• Tuple Types ℕ ⨉ ℕ

Let	(a,	b)	:=	t. Suppose we know that t	=	(5,	7)

 Then, we have a	=	5 and b	=	7

• Tuple Types [number, number]

const t: [number, number] = …;
const [a, b] = t;
console.log(a); // first part of t

“:=” means a definition

required style for 331

Readonly Values

• TypeScript can ensure values aren’t modified
– extremely useful! (mutation makes everything harder)

• Tuple types should always be readonly

type NumberPair = readonly [number, number];

• Individual fields of records should be marked readonly

type NumberPair = {readonly x: number,
 readonly y: number};

Simple Functions in Math

• Simplest function definitions are single expressions

• Will write them in math like this:

func	double(n	:	ℕ)	:=	2n

func	dist(p	:	{x:	ℝ,	y:	ℝ})	:=	(p.x2	+	p.y2)1/2

– any normal math allowed in the expression

Simple Functions in Math

• Can define short-hand for types in math also

type	Point	:=	{x:	ℝ,	y:	ℝ}

func	dist(p	:	Point)	:=	(p.x2	+	p.y2)1/2

• Can put the argument type on the right instead

func	dist(p)	:=	(p.x2	+	p.y2)1/2 for any p : Point

– needs to be described somewhere (we’re not too picky)
– will need this in some cases coming shortly…

Complex Functions in Math

• Most interesting functions are not simple expressions
– need to use different expressions in different cases

• Can use side-conditions to split into cases

							func	 abs(x	:	ℝ)	:=	x	 	 	 if	x	≥	0
	 	 abs(x	:	ℝ)	:=	–x	 	 	 if	x	<	0

– conditions must be exclusive and exhaustive
we do not want to require on order to determine which applies

– there is a better way to do this in many cases…

Pattern Matching

• Can also define functions by “pattern matching”

						func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

– first case matches only 0
– second case matches 1,	2,	3,	…

if m	≥	1, then m	=	n	+	1 for some n : ℕ

• Simplifies the math in multiple ways…

Pattern Matching

• Pattern matching definition

						func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

 is simpler than using side conditions

	func	 double(n)	 :=	0		 	 	 	 if	n	=	0	 	 for	any	n	:	ℕ
	 	 double(n)	 :=	double(n-1)	+	2	 if	n	>	0	 	 for	any	n	:	ℕ

– e.g., need to explain why double(n-1) is legal
easy in this case, but it gets harder

– (also makes the reasoning easier, as we will see later…)

• We will prefer pattern matching whenever possible

Pattern Matching on Booleans

• Booleans have only two legal values: T and F

• Can pattern match just by listing the values:

							func	 not(T)	:=	F
	 	 not(F)	:=	T

– negates a boolean value
– no simpler way to define this function!

Pattern Matching on Records

• Can pattern match on individual fields of a record

							type	 Steps	:=	{n	:	ℕ,	fwd	:	𝔹}

							func	 change({n:	n,	fwd:	T})	:=	n	 	 	 for	any	n	:	ℕ
	 	 change({n:	n,	fwd:	F})	:=	–n		 	 for	any	n	:	ℕ

– clear that the rules are exclusive and exhaustive

Pattern Matching in TypeScript

• TypeScript does not provide pattern matching
– some other languages do! (see 341)

• We have to translate into “if”s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {
 if (s.fwd) {
 return s.n;
 } else {
 return –s.n;
 }

};

still level 0 but
easy to make mistakes

Pattern Matching in TypeScript

func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

• Also need to be careful with natural numbers

const double = (m: number) => {
 if (m === 0) {
 return 0;
 } else {
 return double(m – 1) + 2;
 }
};

– pattern matching uses “n+1” but the code uses “m” (or “n”)
sadly, TypeScript will not let “n+1” be the argument value

spec says double(m)
but code says double(m – 1)

Level 0

Pattern Matching in TypeScript

func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

• This implementation returns the same thing:

const double = (m: number) => {
 return 2 * m;
};

– but that’s not what the spec says!
– requires reasoning tools to check that this is correct

(will come in HW3+…)

Level 1

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 ?

2 ?

3 ?

Testing

Key Problem

• Key question is what cases to test
– at level -1, we can test all of them
– at level 0+, we cannot

• Split the allowed inputs into subdomains
– for inputs in one subdomain, code “does the same thing”

• Hope: code is entirely right or wrong for subdomain
– one example in the subdomain will tell us if there is a bug
– (note: this is not always true… see sec02 and HW2)

• Plan: Look at the code. See when it “does the same thing”

Testing Straight-Line Code

Straight-line Code looks like

 return 2 * (n-1) + 1;

Or, more generally, like this

 const m = n - 1;
 return 2 * m + 1;

• Any number of constant values allowed
– often makes the code easier to read, but no different

• Inputs where it executes the same straight-line code
are “doing the same thing”

Testing Straight-Line Code

 Rule: Same straight-line code is one subdomain

Straight-line Code looks like

 return 2 * (n-1) + 1;

Or, more generally, like this

 const m = n - 1;
 return 2 * m + 1;

Testing Subdomains

 Rule: at least two test cases per subdomain
 (assuming subdomain contains at least two inputs)

• My main worry is copy-and-paste issues
– copy “return 1;” and forget to change it later
– if the test we pick happens to want 1, we’ll never notice

• Still doesn’t guarantee the code is right! (see HW2)

• More is obviously also okay
– not a contest to write the fewest tests

Testing Conditionals

Conditionals look like this

 if (n > 0) {
 return 2 * (n-1) + 1;
 } else {
 return 0;
 }

Two branches (“then” and “else”)
– in this case, both branches are straight-line code

Testing Conditionals

 Rule: branches are in separate subdomains

• Would be negligent not to test both branches

• If both are straight-line code, then 4 tests

• With if/else if/else, we’d need 6 tests
– 3 branches x 2 per straight-line block = 6 cases

Testing Conditionals

Conditionals look like this (with n an integer)

 if (n > 0) {
 return 2 * (n-1) + 1;
 } else {
 return 0;
 }

• Boundary cases are 0 and 1
– cases for “then” block could be 1 and 10 (say)
– cases for “else” block could be 0 and -1 (say)

