CSE 331

Correctness

Kevin Zatloukal

Recall: Shipping Software

» Building shippable version is ~10x harder than demo
— demo version needs to work when used properly
— shipped version needs to work properly no matter what

 1m users will try millions of cases that you didn’t
— heeds to work properly on all cases, even ones you didn’t try

 How is this achieved in practice?

Standard Techniques for Correctness

Standard practice uses three techniques:
* Testing: try it on a well-chosen set of examples
* Tools: type checker, libraries, etc.

* Reasoning: think through your code carefully
— have another person do the same (“code review”)

Each removes ~2/3' bugs but of different kinds
Combination removes >97% of bugs

Which Ones and How Much

* The first question to ask yourself:

How much of each is needed for my program?

e Correctness is easier for some programs vs others

* Personally, | break this into 5 cases...

— “levels” of difficulty
warning: | made this terminology up

Correctness Levels

small # of inputs exhaustive
0 ?
1 ?
2 ?

Level -1

 Small number of inputs / configurations

* Just check them all!
— this is the right answer

* This category does not require a programmer
— anyone can check the answer
— programming is hard, so skip it when you can

Level -1

 Coding is the wrong tool for this job
— can happen in part of a larger application

iPhone development lets you draw the Ul:

S activity_campus_paths_mainxml % | (€ CampusPathsMainActivityjava *

Palette Q #- 1~ [E E Bl ©- ONexuss- m26- @ AappTheme @language- LI+ Properties Q « |~)
All @ U X 8 18- [=- Osx®E W B o button
Widgets
Tedt %) ToggleButton - o 0 o0
Layouts CheckBox
Containers @ RadioButton
Images % CheckedTextView o
Date = Spinner
Transitions C ProgressBar v S
Advanced = ProgressBar (Horizont: CSE331-17su Campus Paths D
Google - SeekBar
Design - SeekBar (Discrete) 8
AppCompat B3 QuickContactBadge
RatingBar
 Switch
layout . _content
g layout_hei
BUTTON Button
style
backgrou...]
Eoten g backgrou... |
Component Tree Loadl e stateListA... ‘
 ConstraintLayout elevation :’
ok button —
visibility | none
N onClick |none
TextView
text Button ‘
Ftext]
B contentD...
textAp..
Favorite Attributes
visibility [none
g View all properties =
Design | Text

4 Eventlog [E] Gradle Console

alpeIn (5

1BPO PIOIPUY s

Level -1

Mckay Wrigley &
@mckaywrigley

Greg Brockman (@gdb) of OpenAl just demoed GPT-4 creating a working
website from an image of a sketch from his notebook.

It’s the coolest thing I’ve *ever* seen in tech.
If you extrapolate from that demo, the possibilities are endless.

A glimpse into the future of computing.

Level -1

 Can happen as part of a larger application
— may require code but not reasoning

 Happens more often than you might think

— individual function can be level -1
e.g., two boolean inputs (only 4 configurations)

— quite common with Ul
e.g., when | click the button, it should say “hi”

* Be on the lookout for these cases
— save yourself work by spotting them

Correctness Levels

small # of inputs exhaustive
0 ?
1 ?
2 ?

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics
1 no mutation “
2 local variable “
mutation
3 array / object “

mutation

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking
1 no mutation “ libraries
2 local variable “ “
mutation
3 array / object “ “

mutation

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews
1 no mutation “ libraries calculation
induction
2 local variable “ “ Floyd logic
mutation
3 array / object “ “ rep invariants

mutation

Reminders

 We will set an extremely high bar for correctness

* Now is the time to practice proper technique
— much harder to learn technique on harder problems

 Reasoning is not optional
— “either reason now or debug and then reason”
— debugging can be painful

Specifications

Specifications

* Correctness requires a description of the correct answer
— true at any level of correctness

* Description must be precise
— can’t have disagreement about what is correct

* Informal descriptions (English) are usually imprecise

— necessary to “formalize” the English
turn the English into a precise mathematical definition

— professionals are extremely good at this
usually just give English definitions

— important skill to practice

Kinds of Specifications

* Imperative specification says how to calculate the answer
— lays out the exact steps to perform to get the answer

 Declarative specification says what the answer looks like
— does not say how to calculate it
— future: prove our calculation meets the spec

 Can implement a different imperative specification
— future: prove ours is equivalent to the original specification

Example: Imperative Specification

* Absolute value |x| =x if x = 0 and -x otherwise
— definition is an “if” statement

function abs (x: number): number /{
if (x >= 0) {
return x;
} else {

return —X;

} just translating math to TypeScript
Level O

Example: Declarative Specification

* Absolute value |x| is @a number y such that
—y=X
—y=-X
—y=XoO0Ory=-x

function abs (x: number): number /{
if (x >= 0) {
return x;
} else {
return —-x;
} requires some thinking to make sure this code
) returns a number with the properties above

Level 1+
(in fact, Level 1)

Correctness Levels

small # of inputs exhaustive
0 direct from spec ? ? ?
1 ?
2 ?

Level O

* |nstructions say exactly how to calculate answer
— given an imperative specification
— we are just translating math into code

* Still easy to make mistakes!
— too many inputs to test them alli
— need to additional ways of checking for bugs

* Still important to get it right!

Non-programming Example

* Important to calculate grades correctly!

Homework Extra Credit Midterm Final Combined
fx | =0.6*GA4+0.15%14+0.25%)4 E 87.5%1 1! 64.0%E 91.6%I0.25*J2]
91.4% 1 87.9% 70.8% 85.8%
86.2% 5 93.0% 62.0% 81.8%
96.5% 1 60.9% 69.0% 84.4%
98.2% 0 88.6% 91.3% 95.0%
86.3% 0 91.5% 63.0% 81.3%

* The syllabus says the formula
— ask someone else to double-check (“code review”)
— spot check some of them

Correctness Levels

small # of inputs exhaustive
0 direct from spec heuristics type checking code reviews
1 ?
2 ?

Correctness at Level O

Correctness at Level O requires these elements:

 Code review
— second set of eyes

* Type checker

— third set of eyes (so to speak)
(tends to find different mistakes than human reviewers)

e Good set of tests

— can’t test every case... need to pick the the right ones
(more on this next lecture...)

Type Checkers

 The main part of “Tools” is the type checker
— libraries are the other important part

* Type Checkers are very useful for finding bugs
— another set of “eyes” helping us find them
— you have probably learned this already

Type Checkers

* TypeScript and Java have different type systems

— they can catch different bugs for us
TypeScript ensures references are not null (Java does not)

Java ensures that numbers are integers (TypeScript does not)
(more examples coming soon...)

e Critical to understand what the tools will miss
— can ignore issues the tools would catch
— must carefully think about issues the tools would miss

John Carmack @I/D_AA_Carmack 2h
| spent *hours* today debugging

something that turned out to be a
single wrong letter in the code: a
.ge() should have been .gt().

How-To For Level O

 Level O = “direct from spec”
— translate math into our programming language
— TypeScript here, but could also be Java

* Rest of this lecture:

— define math for data and code

— describe how to translate those into TypeScript
try to make the translations as straightforward as possible (fewer mistakes)

— mention new TypeScript features when related

Math Notation

Math Notation

* Define a language for clear, precise specifications

* Will use a very small math toolkit

— almost all of it describable in one lecture
most of it today, but one key tool coming later

— full description is just 3 pages

* Split this into two parts: data and code

— data types: our math for data

— functions: our math for code
(can’t talk about code until we describe input and output types)

Basic Data Types in Math

* |n math, the basic data types are “sets”

— sets are collections of objects called elements

— write x € S to say that “x” is an element of set “S”,
and x & S to say that it is not.

 Examples:

X EZ
XEN
XER
XEB
XES
XES

X is an integer

X is a hon-negative integer (natural)

X is a real number
X is T or F (boolean)
X is a character

X is a string

— hon-standard names

Basic Data Types in TypeScript

integer XEZL number no fractional part
natural xEN number non-negative
real xER number
boolean xEB boolean
character XES string length 1
string X€ES string

we will often write
X :7Z instead of x € Z

— only division on integers can produce non-integer
— only subtraction on non-negative can produce negative

Ways to Create New Types In Math

* Union Types SSUN

— contains every object in either (or both) of those sets
— e.g., all strings and natural numbers

 Ifx€NUS, then x could be a natural or string

e Two sets can contain common elements
— in this case, the sets are disjoint

Ways to Create New Types in TypeScript

* Union Types string | number
— can be either one of these

e How do we work with this code?

const x: string | number = .;

// can I call Math.abs(x)?

* We can check the type of x using “typeof”
— TypeScript understands these expressions
— will “narrow” the type of x to reflect that information

Ways to Create New Types in TypeScript

* Union Types string | number
— can be either one of these

e How do we work with this code?

const x: string | number = .;

if (typeof x === “number”) {
console.log(Math.abs(x)) // okay! x is a number
} else {

// x is a string

