
Correctness
Kevin Zatloukal

CSE 331

Recall: Shipping Software

• Building shippable version is ~10x harder than demo
– demo version needs to work when used properly
– shipped version needs to work properly no matter what

• 1m users will try millions of cases that you didn’t
– needs to work properly on all cases, even ones you didn’t try

• How is this achieved in practice?

Standard Techniques for Correctness

Standard practice uses three techniques:

• Testing: try it on a well-chosen set of examples

• Tools: type checker, libraries, etc.

• Reasoning: think through your code carefully
– have another person do the same (“code review”)

Each removes ~2/3rd bugs but of different kinds
Combination removes >97% of bugs

Which Ones and How Much

• The first question to ask yourself:

How much of each is needed for my program?

• Correctness is easier for some programs vs others

• Personally, I break this into 5 cases…
– “levels” of difficulty

warning: I made this terminology up

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 ?

1 ?

2 ?

3 ?

Level -1

• Small number of inputs / configurations

• Just check them all!
– this is the right answer

• This category does not require a programmer
– anyone can check the answer
– programming is hard, so skip it when you can

Level -1

• Coding is the wrong tool for this job
– can happen in part of a larger application

• iPhone development lets you draw the UI:

Level -1

Level -1

• Can happen as part of a larger application
– may require code but not reasoning

• Happens more often than you might think
– individual function can be level -1

e.g., two boolean inputs (only 4 configurations)
– quite common with UI

e.g., when I click the button, it should say “hi”

• Be on the lookout for these cases
– save yourself work by spotting them

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 ?

1 ?

2 ?

3 ?

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics

1 no mutation “

2 local variable
mutation

“

3 array / object
mutation

“

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking

1 no mutation “ libraries

2 local variable
mutation

“ “

3 array / object
mutation

“ “

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

Reminders

• We will set an extremely high bar for correctness

• Now is the time to practice proper technique
– much harder to learn technique on harder problems

• Reasoning is not optional
– “either reason now or debug and then reason”
– debugging can be painful

Specifications

Specifications

• Correctness requires a description of the correct answer
– true at any level of correctness

• Description must be precise
– can’t have disagreement about what is correct

• Informal descriptions (English) are usually imprecise
– necessary to “formalize” the English

turn the English into a precise mathematical definition

– professionals are extremely good at this
usually just give English definitions

– important skill to practice

Kinds of Specifications

• Imperative specification says how to calculate the answer
– lays out the exact steps to perform to get the answer

• Declarative specification says what the answer looks like
– does not say how to calculate it
– future: prove our calculation meets the spec

• Can implement a different imperative specification
– future: prove ours is equivalent to the original specification

Example: Imperative Specification

• Absolute value |x|	=	x if x	≥	0 and –x otherwise
– definition is an “if” statement

 function abs(x: number): number {
 if (x >= 0) {
 return x;

 } else {
 return –x;

 }
 } just translating math to TypeScript

Level 0

Example: Declarative Specification

• Absolute value |x| is a number y such that
– y	≥	x	
– y	≥	–x
– y	=	x	or y	=	–x

 function abs(x: number): number {
 if (x >= 0) {
 return x;

 } else {
 return –x;

 }
 }

requires some thinking to make sure this code
returns a number with the properties above

Level 1+
(in fact, Level 1)

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 direct from spec ? ? ?

1 ?

2 ?

3 ?

Level 0

• Instructions say exactly how to calculate answer
– given an imperative specification
– we are just translating math into code

• Still easy to make mistakes!
– too many inputs to test them all
– need to additional ways of checking for bugs

• Still important to get it right!

Non-programming Example

• Important to calculate grades correctly!

• The syllabus says the formula
– ask someone else to double-check (“code review”)
– spot check some of them

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 direct from spec heuristics type checking code reviews

1 ?

2 ?

3 ?

Correctness at Level 0

Correctness at Level 0 requires these elements:

• Code review
– second set of eyes

• Type checker
– third set of eyes (so to speak)

(tends to find different mistakes than human reviewers)

• Good set of tests
– can’t test every case… need to pick the the right ones

(more on this next lecture…)

Type Checkers

• The main part of “Tools” is the type checker
– libraries are the other important part

• Type Checkers are very useful for finding bugs
– another set of “eyes” helping us find them
– you have probably learned this already

Type Checkers

• TypeScript and Java have different type systems
– they can catch different bugs for us

TypeScript ensures references are not null (Java does not)
Java ensures that numbers are integers (TypeScript does not)
(more examples coming soon…)

• Critical to understand what the tools will miss
– can ignore issues the tools would catch
– must carefully think about issues the tools would miss

How-To For Level 0

• Level 0 = “direct from spec”
– translate math into our programming language
– TypeScript here, but could also be Java

• Rest of this lecture:
– define math for data and code
– describe how to translate those into TypeScript

try to make the translations as straightforward as possible (fewer mistakes)

– mention new TypeScript features when related

Math Notation

Math Notation

• Define a language for clear, precise specifications

• Will use a very small math toolkit
– almost all of it describable in one lecture

most of it today, but one key tool coming later

– full description is just 3 pages

• Split this into two parts: data and code
– data types: our math for data
– functions: our math for code

(can’t talk about code until we describe input and output types)

Basic Data Types in Math

• In math, the basic data types are “sets”
– sets are collections of objects called elements
– write x ∈	S to say that “x” is an element of set “S”,

and x ∉	S to say that it is not.

• Examples:
 x ∈	ℤ x is an integer
 x ∈	ℕ x is a non-negative integer (natural)
 x ∈	ℝ x is a real number
 x ∈	𝔹 x is T or F (boolean)
 x ∈	𝕊	 x is a character
 x ∈	𝕊* x is a string

non-standard names

Basic Data Types in TypeScript

Condition Math TypeScript Up to Us

integer x	∈	ℤ number no fractional part

natural x	∈	ℕ number non-negative

real x	∈	ℝ number

boolean x	∈	𝔹 boolean

character x	∈	𝕊 string length 1

string x	∈	𝕊* string

we will often write
x : ℤ instead of x ∈	ℤ

– only division on integers can produce non-integer
– only subtraction on non-negative can produce negative

Ways to Create New Types In Math

• Union Types 	 𝕊*		∪		ℕ
– contains every object in either (or both) of those sets
– e.g., all strings and natural numbers

• If x	∈	ℕ	∪	𝕊*, then x could be a natural or string

• Two sets can contain common elements
– in this case, the sets are disjoint

Ways to Create New Types in TypeScript

• Union Types string | number
– can be either one of these

• How do we work with this code?

const x: string | number = …;

// can I call Math.abs(x)?

• We can check the type of x using “typeof”
– TypeScript understands these expressions
– will “narrow” the type of x to reflect that information

Ways to Create New Types in TypeScript

• Union Types string | number
– can be either one of these

• How do we work with this code?

const x: string | number = …;

if (typeof x === “number”) {
 console.log(Math.abs(x)) // okay! x is a number
} else {
 … // x is a string
}

