
Intro to the Browser
Kevin Zatloukal

CSE 331

More TypeScript

Last Time: Ways to Create New Types

• Union Types string | number
– can be either one of these

• Not possible in Java!
– TS can describe types of code that Java cannot

• Unknown type is (essentially) a union

type unknown = number | string | boolean | null | …

Last Time: Ways to Create New Types

• Can create compound types in multiple ways
– put multiple types together into one larger type

• Record Types {x: number, s: string}
– anything with at least fields “x” and “s”

const p: {x: number, s: string} = {x: 1, s: ‘hi’};
console.log(p.x); // prints 1

Last Time: Ways to Create New Types

• Can create compound types in multiple ways
– put multiple types together into one larger type

• Tuple Types [number, string]
– at runtime, this is an array of length 2
– create them like this

const p: [number, string] = [1, ‘hi’];

– give names to the parts to use them

const [x, y] = p;
console.log(x); // prints 1

Last Time: Type Aliases

• TypeScript lets you give shorthand names for types

type Point = {x: number, y: number};

const p: Point = {x: 1, y: 2};
console.log(p.x); // prints 1

• Usually nicer but not necessary
– e.g., this does the same thing

const p: {x: number, y: number} = {x: 1, y: 2};
console.log(p.x); // prints 1

Last Time: Structural vs Nominal Typing

• Java uses “nominal typing”

class T1 { int a; int b; }
class T2 { int a; int b; }

T1 x = new T1();

– cannot pass “ x ” to a function expecting a “ T2 ”

• Libraries do not interoperate unless it was pre-planned
– create “adapters” to work around this

example of a design pattern used to work around language limitations

Last Time: Structural vs Nominal Typing

• Deeper difference between TypeScript and Java
– records aren’t just a quick way to describe a class

• TypeScript uses “structural typing”
– sometimes called “duck typing”

“if it walks like a duck and quacks like a duck, it’s a duck”

type T1 = {a: number, b: number};
type T2 = {a: number, b: number};

const x: T1 = {a: 1, b: 2};

– can pass “ x ” to a function expecting a “ T2 ”!

Type Inference

• If you leave off the type, TS will try to guess it
– often, but not always, it guesses correctly

• This will work fine

const p = {x: 1, y: 2};
console.log(p.x); // prints 1

– compiler should correctly guess{x: number, y: number}
– can see in VS Code by hovering over “p”

Type Inference

• If you leave off the type, TS will try to guess it
– often, but not always, it guesses correctly

• In 331, type declarations are required on
– function arguments and return values
– variables declared outside of any function (“top-level”)

these could be exported, so types should be explicit

• We do not require declarations on local variables
– but it is fine to include them
– if TS guesses wrong, you will need to include it

Browsers

Last Time (section): Browser Operation

• Browser reads the URL to find what HTML to load

• Contacts the given server and asks for the given path

server name path

request

response
(HTML)

client server

Last Time (section): Browser Operation

• Tools come with its own server
– npm run start starts that server for us
– available at http://localhost:8080/
– compiles the code and returns an HTML page

request

response
(HTML)

client server

Last Time (section): Query Parameters

• Talked about the query parameters in the URL
– encoded in the “search string” in the form “?a=b&c=d…”
– primary way we will provide input to our apps

• Read query parameters from the URL like this:

const params = new URLSearchParams(window.location.search);
console.log(params.get(“a”)); // prints “b”

• URLSearchParams class is built into JavaScript

Last Time (section): Summary

Key points to understand for now

• Must execute npm run start to use your app
– starts a server that will give your code to the browser

• Run your app in browser at “http://localhost:8080/”
– browser gets the code from the server

• Code running in the browser gets its input from the URL
– input is provided in the URL as query parameters “?a=b&…”
– use URLSearchParams to read the query parameters

More details later in the quarter…

HTML

HTML

• HTML = Hyper Text Markup Language
– text format for describing a document / UI
– text describes what you want drawn in the browser

• HTML text consists primarily of “tags” and text

HTML Tags

Tag Name Content

Closing Tag

Element

<p> Some Text </p>

<p id=”firstParagraph”> Some Text </p>

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element

Elements Form a Tree

• Elements can have children (text or elements)
– text is always a leaf in the tree

<div>
 <p id=”firstParagraph”> Some Text </p>

 <div>
 <p>Hello</p>
 </div>
</div>

div

p br div

p

More on HTML

• HTML is a text format that describes a tree
– nodes are elements or text

<div>
 <p>Some text</p>
 <p>More text</p>
</div>

div

p p

HTML text
HTML tree

parse

– HTML text is parsed into a tree
– JS can access the tree in the variable “document”

More on HTML

• Browser window displays an HTML document
– tree is turned into drawing in the page

 Some text

 More text

div

p p
HTML display

HTML tree

render

HTML tree

– browser displays (renders) the HTML in the window
browsers parse and render very quickly

– JS has limited access to display information

Web App UI

• Browser will render any HTML included in server response

• Our server sends a page that just executes our code
– page is mostly empty

• How do we display HTML from our code?
– need to make HTML
– need to tell the browser to render it

Web App UI

• Initial page has a placeholder in the HTML:

<div id=“main”></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem: HTMLElement | null = document.getElementById(“main”);
if (elem !== null) {
 const root: Root = createRoot(elem);
 root.render(… /* some HTML */);
}

– createRoot is a function provided by the React library
(more details on this later on…)

– how do we create the HTML?

HTML Literals

• Extension of JS / TS allows HTML expressions
– file extension must be .jsx (or .tsx for TS)

const x = <p>Hi there!</p>;

• TypeScript will make sure the HTML is valid
– will complain if it has unknown tags or attributes
– will complain if attribute values have the wrong type
– these checks are very useful

HTML Literals

• Supports substitution like `..` string literals,
– but uses {..} not ${..}

const name = “Fred”;
return <p>Hi {name}</p>;

• Can also substitute the value of an attribute:

const rows = 3;
return (
 <textarea rows={rows} cols=“25”>
 initial text here

 </textarea>);

Styling

• The “style” attribute controls appearance details
– margins, padding, width, fonts, etc.
– see an HTML reference for details (when necessary)

• Attribute value can include many properties
– each is “name: value”
– separate multiple using “;”

<p>Hi,
 Bob!
</p>

– we will generally not worry much about looks in this class…

https://developer.mozilla.org/en-US/docs/Web/HTML/Reference

Calculating the Style

• How do we calculate part of the style in code?
– you might think this would work

const n = 15;
…

<p>Hi,
 Bob

</p>

– but it does not type check!
– the type of the “style” attribute is not string

Style Attribute in JSX

• The type of the style attribute is a record!

const r = {color: “red”, marginLeft: `${n}px`};
return <p> Hi, Bob!</p>;

• Field names differ slightly from HTML
– JS doesn’t allow “-” in a field name
– JS uses camelCapNames instead of camel-caps-names

• Looks weird, but record can be written in-line:

return (<p> Hi,
 Bob!</p>);

Cascading Style Sheets (CSS)

• Commonly used styles can be named
– association of names to styles goes in a .css file

// foo.css
span.fancy { color: red; margin-left: 15px }

// foo.html
… <p>Hi, Bob</p> …

• Useful to avoid repetition of styling
– makes it easier to change

Cascading Style Sheets (CSS)

• CSS styling can be used in JSX / TSX as well

// foo.css
span.fancy { color: red; margin-left: 15px }

// foo.tsx
import ’./foo.css’; // another weird import
…

return <p>Hi, Bob!</p>;

• Nice to get this out of the source code
– usually not the programmers who need to change it

JSX Gotchas

• Must wrap multi-line HTML literals with (..)

• Must have a single root (a tree)
– e.g., cannot do this

return <p>one</p><p>two</p>;

– instead, wrap in a <div> or just <>..</> (“fragment”)

• Replacements for attributes matching keywords
– use “className=” instead of “class=”
– use “htmlFor=” instead of “for=”

