CSE 331
Intro to JavaScript & TypeScript

Kevin Zatloukal

Programming for the Browser

* Today: overview of JavaScript (JS) & TypeScript (TS)

Both languages can be run in different environments

— command line (like Java)
— inside the browser

Primarily interesting because of the browser
— heither language would be used much otherwise
— command line provided so you can use one language for both

In both environments, print output with console.log(..)
— prints to command line or “Developer Console” in the browser

Programming for the Browser

e JavaScript is the lingua franca of web browsers

* Previously, other languages were tried in the browser
— Java was used but is no longer supported
— Flash was used but is largely no longer supported
— Google’s “dart” language is still around (probably)

* Now, other languages used by compiling into JavaScript
— TypeScript used this way

— Java can be compiled to JS (but it’s not great)
you can’t really get around needing to learn JS

Plan for This Week

 Today: overview of JavaScript and TypeScript
« Tomorrow: hands-on work in section

* No rush to learn the whole language
— we will start with a small subset of its features

— we won’t use all the language this quarter
— have all quarter to get more familiar with JS and TS

JavaScript

History of JavaScript

* |ncredibly simple language
— created in 10 days by Brendan Eich in 1995
— often difficult to use because it is so simple

* Features added later to fix problem areas
— Imports
— classes

Relationship to Java

* Initially had no relation to Java
— picked the name because Java was popular then
— added Java’s Math library to JS also

e.g., Math.sqgrt is available in JS, just like Java

— copied some of Java’s String functions to JS string
e.g., s.charCodeAt (3) is available in JS, just like Java

 Both are in the “C family” of languages
— much of the syntax is the same
— more differences in data types

 We will discuss syntax (code) first and then data...

JavaScript Syntax

 Both are in the “C family” of languages

 Much of the syntax is the same
— most expressions (+, -, *, /, ?:, function calls, etc.)
— 1f, for,while,break, continue, return
— comments with //or /* .. */

* Different syntax for a few things
— declaring variables
— declaring functions
— equality (===)

Java vs JavaScript Syntax

* The following code is legal in both languages:

“ ”

— assume “s” and “j” are already declared

s = 0;

j = 0;

while (3 < 10) { OR for (j = 0; j < 10; J++)
s += 7,
J++;

}

// Now s == 45

Differences from Java: Type Declarations

* JavaScript variables have no declared types
— this is a problem... we will get them back in TypeScript

* Declare variables in one of these ways:

const x = 1;
let v = “foo”;

— “const” cannot be changed; “1et” can be changed
— use “const” whenever possible!

* Also affects function argument declarations
— more on this later...

Differences from Java: “===" operator

e JavaScript’'s “=="is problematic

— tries to convert objects to the same type
e.g., 3 == “3”istrue

* We will use “===" (and “!==") instead:

— no type conversion will be performed
e.g., 3 === “3” s false

* Mostly same as Java

— compares values on primitives, references on objects

— but strings are primitive in JS (no .equals needed)
== on strings common source of bugs in Java

Basic Data Types of JavaScript

« JavaScript includes the following runtime types

number

string

boolean

null

undefined (another null)
Object

Array (special subtype of Object)
we won’t use them
until week 5/6

Numbers

number (floating point like Java double)

JS does not have an “int” type!
— floating point can represent integers too, so this is fine

will be an issue in TypeScript though...

All the usual operators: + - * / ++ —- += ..

Math library largely copied from Java
— e.g., Math.sqgrt returns the square root

Be careful when using division!
— can produce a non-integer!

use Math.floor (x / y) to do Java-like integer division

Strings

* Mostly the same as Java

— immutable
— string concatenation with “+”

* A few improvements
— string comparison with “===" and “<”
— use either 7 . .” or 7. .” (single or double quotes)
— new string literals that support variable substitution:

const name = “Fred”;

console.log(Hi, ${name}!’); // prints “Hi, Fred!”

Boolean

* All the usual operators: &s& || !

« “1f” can be used with any value
— “falsey” things: false, 0,NaN, “”,null, undefined

— “truthy” things: everything else

A common source of bugs...
— best to stick to boolean values

Record Types

JavaScript “Object” is something with “fields”

« JavaScript has special syntax for creating them

const p = {x: 1, y: 2};
console.log(p.x); // prints 1

* The term “object” is potentially confusing
— used for many things
— | prefer it as shorthand for “mathematical object

”

Will refer to things with fields as “records”

Record Types

* Quotes are optional around field names

const p = {x: 1, y: 2};
console.log(p.x); // prints 1

Const q — {“X”: 1’ \\y//: 2};
console.log(g.x); // also prints 1

* Field names are literal strings, not expressions!

const x = “foo”;

console.log({x: x}); // prints {“x”: “foo”}

Checking Types at Run Time

X is undefined x === undefined
x is null x === null
X is a number typeof x === “number”
X is an integer ..and Math.floor (x) === x
X is a string typeof x === “string”
X is an object or array typeof x === “object”
X is an array Array.isArray (x)

Hard to check if x is a specific record type at runtime.
Much easier to let the type checker do this!

Functions

* Functions are first class objects
— “arrow” expressions creates functions
— store these into a variable to use it later

const add?2 = (x, y) => x + vy;
console.log(add2 (1, 2)); // prints 3
const add3 = (x, vy, z) => {

return x + y + z;
Y
console.log(add3(1, 2, 3)); // prints 6

Functions

e We will declare functions like this

const add = (x, y) => {
return x + y;

Y

// add(2, 3) == 5

* Functions can be passed around
— “functional” programming language

— but we won’t do that (much) this quarter
see CSE 341 for more on that topic

TypeScript

TypeScript Adds Declared Types

* TypeScript includes declared types for variables

 Compiler checks that the types are valid

— extremely useful!
— produces JS just by removing the types

TypeScript Adds Declared Types

* Type is declared after the variable name:

const u: number = 3;

const v: number = 4;

const add = (x: number, y: number): number => {
return x + y;

Y
console.log(add(u, v)); // prints 7

— return type is declared after the argument list (..) and before =>

 “Where types g0” is the main syntax difference vs Java
— other key differences are functions (=>) and equality (===

Basic Data Types of TypeScript

e JavaScript includes the following types

number
string
boolean
null

undefined

Object (record types)
Array (e.g., string[] asinJava)

* TypeScript has the green ones and also...

unknown

any (turns off type checking — do not use!)

Ways to Create New Types in TypeScript

* Union Types string | number
— can be either one of these

* Not possible in Java!
— TS can describe types of code that Java cannot

* Unknown type is (essentially) a union

type unknown = number | string | boolean | null | .

Ways to Create New Types in TypeScript

 Can create compound types in multiple ways
— put multiple types together into one larger type

* Record Types {x: number, s: string}
— anything with at least fields “x” and “s”

const p: {x: number, s: string} = {x: 1, s:
console.log(p.x); // prints 1

‘hi’};

Ways to Create New Types In TypeScript

 Can create compound types in multiple ways
— put multiple types together into one larger type

* Tuple Types [number, string]

— at runtime, this is an array of length 2
— create them like this

const p: [number, string] = [1, ‘hi’];

— give names to the parts to use them

const [x, V] = p;
console.log(p.x); // prints 1

Type Aliases

* TypeScript lets you give shorthand names for types

type Point = {x: number, y: number};
const p: Point = {x: 1, y: 2};

console.log(p.x); // prints 1

* Usually nicer but not necessary
— e.g., this does the same thing

const p: {x: number, y: number} = {x: 1, y: 2};
console.log(p.x); // prints 1

Structural vs Nominal Typing

* Deeper difference between TypeScript and Java
— records aren’t just a quick way to describe a class

* TypeScript uses “structural typing”

— sometimes called “duck typing”
“if it walks like a duck and quacks like a duck, it’s a duck”

type Tl = {a: number, b: number};
type T2 = {a: number, b: number};

const x: Tl = {a: 1, b: 2};

— can pass “ x ” to a function expecting a “ T2 !

Structural vs Nominal Typing

e Java uses “nominal typing”

class Tl { int a; int b; }
class T2 { int a; int b; }

Tl x = new T1();

— cannot pass “ x ” to a function expectinga “ 12”7

* Libraries do not interoperate unless it was pre-planned

— create “adapters” to work around this
example of a design pattern used to work around language limitations

Imports

JS / TS code can now be split into multiple files
— JS didn’t initially have that feature

By default, declarations are hidden outside the file

Add the keyword “export” to make it visible

export const MAX NUMBER = 15; // in src/foo.ts

* Use the “import” statement to bring into another file

import { MAX NUMBER } from ‘./foo’; // in src/bar.ts

— ‘. /foo’ is relative path from this file to foo. ts
— extension (. ts) is not included

Imports

export const MAX NUMBER = 15; // in src/foo.ts

import { MAX NUMBER } from ‘./foo’; // in src/bar.ts

* For code you write, you will only need this syntax

 JS /TS includes other ways of importing things
— full explanation is very complicated
— don’t worry about it...

« Starter code will include some that look different, e.g.:

import React, { Component } from ‘react’;

import ‘./foo.png’; // include a file along with the code

Next Up

* Software to set up if you're using your own machine
— see Software Setup Guide on the website

* Section tomorrow
— start playing with JS / TS yourself
— starting the server
— parsing the query parameters in the URL
— writing HTML into the page

* Friday lecture
— includes last things you’ll need for HW1
— e.g., how to change the appearance of HTML with styling

https://courses.cs.washington.edu/courses/cse331/23au/software-setup.html

