
Intro to JavaScript & TypeScript
Kevin Zatloukal

CSE 331



Programming for the Browser

• Today: overview of JavaScript (JS) & TypeScript (TS)

• Both languages can be run in different environments
– command line (like Java)
– inside the browser

• Primarily interesting because of the browser
– neither language would be used much otherwise
– command line provided so you can use one language for both

• In both environments, print output with console.log(..)
– prints to command line or “Developer Console” in the browser



Programming for the Browser

• JavaScript is the lingua franca of web browsers

• Previously, other languages were tried in the browser
– Java was used but is no longer supported
– Flash was used but is largely no longer supported
– Google’s “dart” language is still around (probably)

• Now, other languages used by compiling into JavaScript
– TypeScript used this way
– Java can be compiled to JS (but it’s not great)

you can’t really get around needing to learn JS



Plan for This Week

• Today: overview of JavaScript and TypeScript

• Tomorrow: hands-on work in section

• No rush to learn the whole language
– we will start with a small subset of its features
– we won’t use all the language this quarter
– have all quarter to get more familiar with JS and TS



JavaScript



History of JavaScript

• Incredibly simple language
– created in 10 days by Brendan Eich in 1995
– often difficult to use because it is so simple

• Features added later to fix problem areas
– imports
– classes



Relationship to Java

• Initially had no relation to Java
– picked the name because Java was popular then
– added Java’s Math library to JS also

e.g., Math.sqrt is available in JS, just like Java

– copied some of Java’s String functions to JS string
e.g., s.charCodeAt(3) is available in JS, just like Java

• Both are in the “C family” of languages
– much of the syntax is the same
– more differences in data types

• We will discuss syntax (code) first and then data…



JavaScript Syntax

• Both are in the “C family” of languages

• Much of the syntax is the same
– most expressions (+, -, *, /, ?:, function calls, etc.)
–  if, for , while , break , continue , return
– comments with // or /* .. */

• Different syntax for a few things
– declaring variables
– declaring functions
– equality (===)



Java vs JavaScript Syntax

• The following code is legal in both languages:
– assume “s” and “j” are already declared

s = 0;

j = 0;

while (j < 10) {
  s += j;
  j++;

}

// Now s == 45

OR for (j = 0; j < 10; j++)



Differences from Java: Type Declarations

• JavaScript variables have no declared types
– this is a problem… we will get them back in TypeScript

• Declare variables in one of these ways:

const x = 1;
let y = “foo”;

– “const” cannot be changed; “let” can be changed
– use “const” whenever possible!

• Also affects function argument declarations
– more on this later…



Differences from Java: “===” operator

• JavaScript’s “==” is problematic
– tries to convert objects to the same type

e.g., 3 == “3” is true

• We will use “===” (and “!==”) instead:
– no type conversion will be performed

e.g., 3 === “3” is false 

• Mostly same as Java
– compares values on primitives, references on objects
– but strings are primitive in JS (no .equals needed)

== on strings common source of bugs in Java



Basic Data Types of JavaScript

• JavaScript includes the following runtime types

number

string
boolean

null
undefined   (another null)
Object    
Array     (special subtype of Object)

we won’t use them 
until week 5/6



Numbers

number    (floating point like Java double)

• JS does not have an “int” type!
– floating point can represent integers too, so this is fine

will be an issue in TypeScript though…

• All the usual operators: + - * / ++ -- += …

• Math library largely copied from Java
– e.g., Math.sqrt returns the square root

• Be careful when using division!
– can produce a non-integer!
–  use Math.floor(x / y) to do Java-like integer division



Strings

• Mostly the same as Java
– immutable
– string concatenation with “+”

• A few improvements
– string comparison with “===” and “<”
– use either ’..’ or ”..” (single or double quotes)
– new string literals that support variable substitution:

const name = “Fred”;
console.log(`Hi, ${name}!`);  // prints “Hi, Fred!”



Boolean

• All the usual operators: && || !

• “if” can be used with any value
– “falsey” things: false, 0, NaN, “”, null, undefined

– “truthy” things: everything else

• A common source of bugs…
– best to stick to boolean values



Record Types

• JavaScript “Object” is something with “fields”

• JavaScript has special syntax for creating them

const p = {x: 1, y: 2};
console.log(p.x);  // prints 1

• The term “object” is potentially confusing
– used for many things
– I prefer it as shorthand for “mathematical object”

• Will refer to things with fields as “records”



Record Types

• Quotes are optional around field names

const p = {x: 1, y: 2};
console.log(p.x);  // prints 1

const q = {“x”: 1, “y”: 2};
console.log(q.x);  // also prints 1

• Field names are literal strings, not expressions!

const x = “foo”;
console.log({x: x});  // prints {“x”: “foo”}



Checking Types at Run Time

Condition Code

x is undefined x === undefined

x is null x === null

x is a number typeof x === “number”

x is an integer … and  Math.floor(x) === x

x is a string typeof x === “string”

x is an object or array typeof x === “object”

x is an array Array.isArray(x)

Hard to check if x is a specific record type at runtime.
Much easier to let the type checker do this!



Functions

• Functions are first class objects
– “arrow” expressions creates functions
– store these into a variable to use it later

const add2 = (x, y) => x + y;
console.log(add2(1, 2));     // prints 3

const add3 = (x, y, z) => {
  return x + y + z;
};
console.log(add3(1, 2, 3));  // prints 6



Functions

• We will declare functions like this

const add = (x, y) => {
  return x + y;
};

// add(2, 3) == 5

• Functions can be passed around
– “functional” programming language
– but we won’t do that (much) this quarter

see CSE 341 for more on that topic



TypeScript



TypeScript Adds Declared Types

• TypeScript includes declared types for variables

• Compiler checks that the types are valid
– extremely useful!
– produces JS just by removing the types



TypeScript Adds Declared Types

• Type is declared after the variable name:

const u: number = 3;
const v: number = 4;

const add = (x: number, y: number): number => {
  return x + y;
};

console.log(add(u, v));  // prints 7

– return type is declared after the argument list (…) and before =>

• “Where types go” is the main syntax difference vs Java
– other key differences are functions (=>) and equality (===)



Basic Data Types of TypeScript

• JavaScript includes the following types

number
string
boolean
null
undefined
Object    (record types)
Array     (e.g., string[] as in Java)

• TypeScript has the green ones and also…

unknown    
any     (turns off type checking — do not use!)



Ways to Create New Types in TypeScript

• Union Types  string | number
– can be either one of these

• Not possible in Java!
– TS can describe types of code that Java cannot

• Unknown type is (essentially) a union

type unknown = number | string | boolean | null | …



Ways to Create New Types in TypeScript

• Can create compound types in multiple ways
– put multiple types together into one larger type

• Record Types  {x: number, s: string}
– anything with at least fields “x” and “s”

const p: {x: number, s: string} = {x: 1, s: ‘hi’};
console.log(p.x);  // prints 1



Ways to Create New Types In TypeScript

• Can create compound types in multiple ways
– put multiple types together into one larger type

• Tuple Types  [number, string]
– at runtime, this is an array of length 2
– create them like this

const p: [number, string] = [1, ‘hi’];

– give names to the parts to use them

const [x, y] = p;
console.log(p.x);  // prints 1



Type Aliases

• TypeScript lets you give shorthand names for types

type Point = {x: number, y: number};

const p: Point = {x: 1, y: 2};
console.log(p.x);  // prints 1

• Usually nicer but not necessary
– e.g., this does the same thing

const p: {x: number, y: number} = {x: 1, y: 2};
console.log(p.x);  // prints 1



Structural vs Nominal Typing

• Deeper difference between TypeScript and Java
– records aren’t just a quick way to describe a class

• TypeScript uses “structural typing”
– sometimes called “duck typing”

“if it walks like a duck and quacks like a duck, it’s a duck”

type T1 = {a: number, b: number};
type T2 = {a: number, b: number};

const x: T1 = {a: 1, b: 2};

– can pass “ x ” to a function expecting a “ T2 ”!



Structural vs Nominal Typing

• Java uses “nominal typing”

class T1 { int a; int b; }
class T2 { int a; int b; }

T1 x = new T1();

– cannot pass “ x ” to a function expecting a “ T2 ”

• Libraries do not interoperate unless it was pre-planned
– create “adapters” to work around this

example of a design pattern used to work around language limitations



Imports

• JS / TS code can now be split into multiple files
– JS didn’t initially have that feature

• By default, declarations are hidden outside the file

• Add the keyword “export” to make it visible

export const MAX_NUMBER = 15;  // in src/foo.ts

• Use the “import” statement to bring into another file

import { MAX_NUMBER } from ‘./foo’;  // in src/bar.ts

– ‘./foo’ is relative path from this file to foo.ts
– extension (.ts) is not included



Imports

export const MAX_NUMBER = 15;        // in src/foo.ts

import { MAX_NUMBER } from ‘./foo’;  // in src/bar.ts

• For code you write, you will only need this syntax

• JS / TS includes other ways of importing things
– full explanation is very complicated
– don’t worry about it…

• Starter code will include some that look different, e.g.:

import React, { Component } from ‘react’;

import ‘./foo.png’;  // include a file along with the code



Next Up

• Software to set up if you’re using your own machine
– see Software Setup Guide on the website

• Section tomorrow 
– start playing with JS / TS yourself
– starting the server
– parsing the query parameters in the URL
– writing HTML into the page

• Friday lecture
– includes last things you’ll need for HW1
– e.g., how to change the appearance of HTML with styling

https://courses.cs.washington.edu/courses/cse331/23au/software-setup.html

