CSE 331: Software Design & Implementation
Homework 7 (due Wednesday, November 15th at 11:00 PM)

The problems in this assignment contain a mix of written and coding parts. When you have completed them,
submit your solutions in Gradescope. The written problems should be clearly labeled and submitted as a pdf
to the "HW7 Written” assignment. The following completed files should be directly submitted for the coding
portion to the “HW7 Coding" assignment:
index.ts routes.ts routes__test.ts words.ts words__test.ts
For complete instructions for how to submit assignments in this course see the Homework Turn-in Guide.

Remember the rules for reasoning listed in the last assignment. Unless explicitly allowed in the problem
statement, you should not use subscripts in assertions to refer to prior values (instead write the assertions in
terms of current values of variables), and you should not use backward reasoning.

1. Loop Du Jour (20 points)
The following parts consist entirely of coding work. They should be submitted with “HW7 Coding".

Start by checking out the starter code using the command
git clone https://gitlab.cs.washington.edu/cse331-23au-materials/hw-chatbot.git
Then, install the modules using npm install. (The --no-audit is not necessary with server code.)

In this problem, you will implement a function that substitutes some words for others in an array of words
(strings). We can formally define the substitution operation as “substitute(A, M)", where A is an array of
words, M is a map from key words to (replacement) value words, and substitute is defined as follows:

func substitute([], M) =]
substitute(A 4 [w], M) := substitute(A, M) 4 [M[w]] if wisin M
substitute(A 4 [w], M) := substitute(A, M) 4 [w] if w is not in M

The notation “M[w]" means to look up the value corresponding to the key w in the map M. In TypeScript
code, this would be M.get (w), which returns undefined when w is not a key in M.

(a) Write a complete specification for the function substitute in words.ts.

A function declaration is already provided. It looks like this:
export const substitute = (words: stringl[], reps: Map<string, string>): void => {...}

Your specification should explain that substitute will mutate the array words so that its value, after
the call completes, is substitute(words, reps), with the mathematical definition above.

https://courses.cs.washington.edu/courses/cse331/23au/software-setup.html#turnin

(b) Implement substitute in words.ts using a loop.

Declare a local variable “j" that is an index into the array “words". Your invariant should be that
words = substitute(wordsy[0 .. j — 1], reps) - wordsg[j .. n — 1]

where n = words.length. Your code must be correct with this invariant, which says that we have substi-
tuted in the first j elements of words already but not yet in the n — j remaining elements.

(c) Write tests for substitute in words_test.ts.

Follow the rules taught in lecture for choosing your test cases. You don’t have to justify your choices
in comments this time.

You may find tests for functions that mutate an input, rather than return a new value, may take a
few more lines of code to set up than tests we've previously written.

2. Loops, | Did It Again (8 points)

The following parts consist entirely of written work. They should be submitted with “HW7 Written".

In the previous problem, you wrote a function that replaced some words in an array with other words. That
version was able to perform the changes in-place because each word was replaced by another word. In this
problem and the next, we will prove the correctness of code that replaces individual words with one or more
words. This version cannot be easily done in-place, so it will return a new array with the result.

The code is split into two parts. The first part performs the replacements, producing an array of arrays,
and the second part concatenates all the arrays into a single array. We will prove the correctness of the first
part in this problem and the second part in the next problem.

The first part of the function calculates “replace(A, M)", where A is an array of words and M is a map
from words to arrays of words and replace is defined as follows:

func replace([], M) =]
replace(A + [w], M) := replace(A, M) 4 [M[w]] if wisin M
replace(A + [w], M) := replace(A, M) 4 [[w]] if w is not in M

The only difference between this definition and that of “substitute” is on the last line, where we replace “[w]
with “[[w]]". In this case, we are building an array of arrays. A word w that is key in M is replaced by M [w]

[
which will be an array of words, and a word w that is not in a key in M is replaced by the 1-element array [w]

(a)

Now, consider the following code, which claims to calculate replace(A, M) in the array R:

let R: string[1[] = [1;
let i: number = O;
{h: 3
{Inv: R = replace(A[0 .. i —1],M) }}
while (i !== A.length) {
const val = M.get(A[i]);
if (val !'== undefined) {

{ 1

R.push(val);

{pr2: B
} else {
{{ B
R.push([A[i]]);
{ P b3
}
{e: B
i=1i+1;
}
{ P B

{{ Post : R = replace(A, M) }}

Use forward reasoning to fill in P;, before the loop; P, and P; (the postconditions of the two branches)
inside the loop; and Py, after we exit the loop. Use backward reasoning up from just before exiting the
loop to fill in Q.

Note that .push() is appending onto an array. If we append a value z to array Z, that is equivalent
to concatenating as so: Z 4 [z].

Write your assertions with mathematical definitions and notations rather than code notation. For
example, instead of referring to A.length, we'll denote it as ‘n’. If you want to repeat the exact loop
invariant in other assertions, feel free to just write ‘Inv. However, if any part of the invariant changes you
should rewrite it.

Prove that P; implies Inv, P5 implies (), Ps implies (Q, and P4 implies the postcondition.

Think carefully about what the lines of code tell you about the string you're looking at on each
iteration and how it relates to the map M. As a hint, remember that .get () indicates that a key is not
present in the map by returning undefined. With this information, what does entering into each branch
tell us?

3. Jumping Through Loops (12 points)

The following parts consist entirely of written work. They should be submitted with “HW7 Written"

In this problem, we continue the work started in the previous problem on checking the correctness of a
function that replaces individual words in an array with one or more words. The first part performed the word
replacement but transformed the initial array A into an array of arrays R. In the second part, we will concatenate
those arrays together into a second array.

The second part of the function calculates “concat(R)", where concat is defined as follows:

func concat([]) =]
concat(R 4 [[]]) := concat(R)
concat(R # [A # [w]]) := concat(R 4 [A]) # [w]

To understand this definition a little better, let’s start by proving the following:

(a) Let R be any array of arrays. Prove, by structural induction, that concat(R + [A]) = concat(R) 4 A for
any array A.

From the facts that concat([]) = [] and concat(R + [A]) = concat(R) # A, we can (intuitively) see that

concat([[A1], ... [An—1], [A4])
= concat([[41], ... [An—1]) # A4

= concat([]) 4 A1) 4 4 Ay 1 4 Ay
:Al“|'|“"i+An71“|'|“An

where 'n’ is the length of R. In other words, concat(R) is just the concatenation of all the arrays in R
into a single array.

Now, consider the following code, which claims to calculate concat(R) in the array S:

let S: stringl] = [J;

let j: number = O;

{p: 1
{Invy: S = concat(R[0 .. j —1]) }}
while (j !== R.length) {

const A: string[] = R[j];

let k: number = 0;

{p: B
{Inva: S =concat(R[0 .. j —1]) # A[0 .. k — 1] }}
while (k !== A.length) {

{ B

S.push(A[k]);

{ 1

k=k + 1;
{rs: B
}
{ P 1
{Q: 1
j=i+1
}
{5 1

{{ Post: S = concat(R) }}

The invariant of the outer loop says that S stores the result of applying concat to the first j elements of R.
The invariant of the inner loop says that S stores that followed by the first k£ elements of A (which is R[j]).
When we exit the inner loop, S will have all of R[j] added to its end.

(b) Use forward reasoning to fill in Py, before the outer loop; P, before the inner loop; P, at the end of the
inner loop; P, after we exit the inner loop; and Ps, after we exit the outer loop. Use backward reasoning
to fill in @ from what we know just before exiting of the outer loop.

Write your assertions with mathematical definitions and notations rather than code notation. For
example, instead of referring to R.length, we'll denote it as ‘n’ and instead of referring to A.length, we'll
denote it as ‘m’. If you want to repeat the exact loop invariant in other assertions, feel free to just write
‘Inv. However, if any part of the invariant changes you should rewrite it.

Advice: There are nested loops in this problem which is different than the examples we've seen before.
We recommend that you try to reason through the loops independently. Ignore the outer loop and use
Invy as your base fact to reason through the inner loop (including P, immediately after it), then ignore
the inner loop and use Inv; as your base fact to reason through the rest of the outer loop.

(c) Prove that P; implies Invy, P5 implies Inva, P3 implies Inve, Py implies @), and Ps implies Post.

Performing the loop from the previous problem followed by this one thus calculates concat(replace(L, M)),
which is the one-to-many word replacement operation.

4. Two Sides of the Same Join (20 points)
The following parts consist entirely of coding work. They should be submitted with “HW7 Coding".

In this problem, you will implement a function that joins multiple words together into a single string. We
can formally define this operation as “join-words(A)", where join-words is defined as follows:

) =
|

w]) = w

func join-words
join-words

join-words(A 4 [w]) := join-words(A) + w if w is punctuation

(
(
(
join-words(A 4 [w]) := join-words(A) +"“ " +w if w not is punctuation

In other words, this concatenates the words in the array but adds a space before each word to separate it from
prior words and punctuation.

The Array class in JavaScript already includes a function called join that will turn an array of strings into
a single string by concatenating them together (with a string of your choice in between adjacent elements).
Unfortunately, that is not enough to implement the function above, which has different behavior based on
whether the next element in the array is punctuation or not. Instead, we will need to implement this ourselves.

(a) Add code to the body of joinWords in words.ts to return the correct answer when “words” is empty.

That leaves us only with the case when words has at least one element.

(b) Implement the rest of joinWords with a loop.

Declare a local variable “j" that is an index into the array “words” and a variable “parts” that is
an array of strings that will be concatenated at the end (with nothing extra in between those strings).

Your invariant should be that join(parts) = join-words(words[0 .. j — 1]), where “join" is the built-in
function that simply concatenates the strings in “parts”. (Note that, in Typescript, this operation would
be performed by parts.join("").)

words.ts contains a function isPunct that you should use to determine if a particular character is
punctuation. To append to the end of an array, you can use .push().

(c) Verify that the provided tests now pass by running npm run test.

5. At My Splits End (20 points)

The following parts consist entirely of coding work. They should be submitted with “HW7 Coding".

In this problem, you will implement a function that splits a string into its words, with each punctuation
character as its own word and all white space removed entirely. For example, the string “if this, then that”
would become the array of strings [“if", “this”, “,”, “then”, “that"].

From that English description, we would ordinarily write a formalized math definition, but in this case a
recursive definition would be pretty confusing, so we won't make you do that :). Instead, take the following
declarative description of what it means for an array of words A to be a correct splitting of a string s. These
are the conditions we want:

= If you concatenate the words of A, you get back s but with the white space excluded. This is equivalent
to, “join(A) = del-spaces(s)”, where join is the TypeScript function described in problem 4 and del-spaces
is the function from quiz section that removes spaces from a string.

= Words, including punctuation, that were separated by spaces in the original string, should be recognized
as different words in A. This means that for s = “if this, then that”, “ifthis” is not a valid element in A,
instead A needs to contain “if" and “this" separately.

To formalize removing the spaces, we'll mark the locations where the string should be split. In our example,
the splits would be at “|if| |this|,| |then| |that|", where each “|" indicates a split. Note that individual punctuation
characters are their own piece and all adjacent letters are the same piece.

In the code, the split locations will be stored in an array splits, with each element in the array being
an index of the character immediately following a split. For example, with the string above, the splits array
would store [0,2,3,7,8,9,13,14, 18]. It will always be the case that the first index is 0 and the last is the length
of the string, so 0 and 18 in our example.

If i and j are two adjacent elements in the splits array, then s[i .. 7 — 1] is one of the pieces. For example,
for “|if| |this|,| |then| [that|", s[9 .. 13 —1] = s[9 .. 12] = “then”. “then” is a word, but other adjacent elements

may instead represent splits around a space. For example, s[13 .. 14 — 1] = s[13 .. 13] = "

Our implementation of splitWords will consist of two loops. The first loop will find the locations for all
the splits. It will ensure that spaces and punctuation are split from the characters around them, while adjacent
letters are not split. The second loop, which we have provided, will produce the array of words by retrieving the
substrings of the original string indicated by splits except for the spaces which will be skipped.

(a) Implement the first loop of splitWords. The invariant is already provided. It references a variable “j",
which keeps track of how much of the input string “str” we have processed so far.

The invariant has three conditions:

1. "0 = splits[0] < splits[1] < --- < splits|n — 1] = j, where n = splits.length.”
This says that the first split is just before the first character, the last split is just after the last character
we've processed so far, and each split is after the previous one (meaning each split contains at least
one character).

2. "Foreachi =0 ..n—1, if splits[i] + 1 < splits[i + 1], then str[splits[:] .. splits[i 4+ 1] — 1] is all letters.”
This says that spaces and punctuation must be their own piece, pieces with more than one character
must contain only letters.

3. "Foreach i =1 .. n—1, splits[i] is not between two letters.”
This says that adjacent letters in the original string should not be split, they should remain in the
same piece.

You must implement the loop so that this invariant is preserved each time through the loop body. To
make this easier, we have provided a function CheckInv1 that should be called before the loop begins and

at the end of the loop body so it executes before each iteration. It will double check that these conditions
are satisfied and throw an Error if not.

Here are some hints that can help with this problem:

= Look at the provided test cases for some examples of cases you may want to consider. It is best
to reason through these cases beforehand while writing the code rather than try to debug with the
tests after.

= It's easiest if your loop places at most one split on each iteration. Consider how you can initialize
your variables so this can be a consistent pattern.

= In your loop, you need to consider the cases that the character you're looking at is a letter, space,
or punctuation symbol. For each option, think about if you need to create a new split or extend the
piece you're currently forming. For the latter case, it may be useful to add a split to splits and
update that value as you extend the piece.

After you've completed the first loop, take a look at the second loop of splitWords which has been
provided and make sure you understand what it's doing. This loop maintains the given invariant which
guarantees that words contains all of the characters from str that are not spaces up to the current value of
the counter 7, and that words doesn't contain any spaces. Just like in part (a), this loop uses a function,
CheckInv2, to make sure the invariant is maintained.

Verify that the provided tests now pass by running npm run test.

Start the server by running npm run start. If that command fails due to “error TS5042" (as it seems to
often on Windows), you can instead run npm run build followed by npm run server. The advantage
of npm run start is that it will automatically restart the server if you change any of the TypeScript
code. If you use the other commands, you will need to stop the server (with control-C) and re-run those
commands to use the new code.

Verify that the app now works by opening up http://localhost:8080 in your browser. That page
should allow you to chat with Dr. Melbourne.

If you open up the “Network™” tab in the Chrome developer tools, you should be able to see each
request sent from the browser to the server and the server's response.

6. Here Is My Handle, Here Is My Route (20 points)

The following parts consist entirely of coding work. They should be submitted with “HW7 Coding".

The application is now running but it is not yet fully functional. At the bottom of the page, there are
buttons that aim to allow users to save and later re-load the chat transcript on the server. In this problem, we
will make those buttons work.

(a)

We first need some place to store the transcripts in the server. We can take advantage of JavaScript's
built-in Map type, which, like Java's Map, allows you to easily get and set values for a given key.

Add the following declaration (along with a descriptive comment) near the top of routes.ts, outside
of any function. The variable “transcripts” will map string keys to JSON data. The latter will have
the unknown type in TypeScript.

const transcripts: Map<string, unknown> = new Map<string, unknown>();

You can see this page for documentation on the Map class, including all of its available methods.

Now, you can fill in the missing part of the save function so that it stores the value sent by the
client under the given name. The function should send back to the client a record with a field indicating
whether the value save replaced a previously saved value.

You can also fill in the body of the “resetTranscriptsForTesting” function. This function, which
is only used in the tests, should remove all the saved transcripts from the map. The Map class includes a
method that will do this with a single call. (See the documentation.)

With those changes made, the tests for the “save” function should now pass.
Implement the body of the load function to find the transcript with a given name. This will be a GET
request, like the chat function, so it will receive arguments as query parameters. (You will want to use

the provided “first” function to convert the value of query parameter into either a string or undefined.
See the chat function for an example of how it is used.)

Your function should return an error if the user did not provide a “name” query parameter or if there
was no transcript previously saved with that name. Indicate the error with a 404 status and send back a
string error message.

If there is a previously saved transcript with that name, send it back to the client inside of the “value”
field of a record. (We always send back records to the client. Here, the record we send will have a single
field called “value” whose value is the transcript they requested.)

Write tests for your load function in routes_test.ts.

When you are done, confirm that all tests pass by running npm run test.

Add routes for /load and /save in index.ts. While the load function expects GET requests, the save
function expects POST requests.

(Re-)start the server. Open a browser window and confirm that you can save the transcript after
chatting for a bit. Then, open a new window and confirm that you can load the saved transcript.

Note that if you stop and restart the server, it is expected that saved history will be lost.

Congratulations on competing another application!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

7. Extra Credit: She Wore a Raspberry Array (0 points)

The following parts consist entirely of written work. They should be submitted with “HW7 written”.

In problem 1, we defined a simple function “substitute” that allowed us to replace words in an array with
replacement words. In problems 2-3, we defined functions “replace” and “concat” whose composition has the
effect of substitute but now with the ability to replace a word by multiple words. When a word is replaced by
only a single word, however, this second version should do the same thing as the first. In this problem, we will
prove that formally.

To state that claim formally, we first need some definitions. Let M7 be any map of words to their
replacements. Define M> to be the map from words to arrays of words containing the same keys as M; and
where, if v = M;j[w], then [v] = Ms[w], i.e., the value associated with key w in My is the 1-element array
containing M;'s value for key w.

With those definitions, we want to prove that

concat(replace(A, My)) = substitute(A, M)

holds for any array A. Prove this by structural induction on A.

10

