
CSE 331
Software Design & Implementation

Winter 2022
HW9, JSON, Fetch

UW CSE 331 Winter 2022 1

Administrivia

• HW8 due today (Thur. 3/3 @ 11:00pm)

• HW9 due a week later (Thurs. 3/10 @ 11:00pm)
– Spec released soon. J
– Plan ahead - this assignment can take a little longer than others.
– Get creative! Lots of cool opportunities.

• Any questions?

2
UW CSE 331 Winter 2022

Agenda

• HW9 Overview
• JSON

– Brief overview
– Helps share data between Java and JS.

• Fetch
– How your JS sends requests to the Java server.

3
UW CSE 331 Winter 2022

Homework 9 Overview

• Creating a new web GUI using React
– Display a map and draw paths between two points on the map.
– Similar to your React app in HW8 – but you may add more!
– Send requests to your Java server (new) to request building and

path info.

• Creating a Java server as part of your previous HW5-7 code
– Receives requests from the React app to calculate paths/send

data.
– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.

4
UW CSE 331 Winter 2022

The Map Lines Stack

UW CSE 331 Winter 2022 5

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

MapLines

*Note: This is not Apache Spark

The Campus Paths Stack

UW CSE 331 Winter 2022 6

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

“How do I go from CSE to
CS2?”

“Here’s some JSON with
your data.”

CampusPaths

*Note: This is not Apache Spark

Any Questions?

7

• Done:
– HW9 Basic Overview

• Up Next:
– JSON
– Fetch

UW CSE 331 Winter 2022

JSON

8

• We have a whole application written in Java so far:
– Reads CSV data, manages a Graph data structure with

campus data, uses Dijkstra’s algorithm to find paths.
• We’re writing a whole application in JavaScript:

– React web app to create an interactive GUI for your users

• Even if we get them to communicate (discussed later), we need
to make sure they “speak the same language”.
– JavaScript and Java store data very differently.

• JSON = JavaScript Object Notation
– Can convert JS Object → String, and String → JS Object
– Bonus: Strings are easy to send inside server

requests/responses.

UW CSE 331 Winter 2022

JSON ↔ Java

9

public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]

{"Purple", "Gold"};

}

Java Object JSON String

• Use Gson (a library from Google) to
convert between them.

– Tricky (but possible) to go from JSON String
to Java Object, but we don’t need that for
this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo();
String json = gson.toJson(sInfo);

{"name":"U of
Washington","location":"Seattle","foun
ded":1861,"mascot":"Dubs
II","isRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}

UW CSE 331 Winter 2022

10

let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of
Washington","location":"Seattle","foun
ded":1861,"mascot":"Dubs
II","isRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)
• This means: if the server sent back a JSON String, it’d be easy to use

the data inside of it – just turn it into a JS Object and read the fields out
of the object.

JSON ↔ JS

UW CSE 331 Winter 2022

JSON – Key Ideas

11

• Use Gson to turn Java objects containing the data into JSON
before we send it back.
– The Java objects don’t have to be simple, like in the

example, Gson can handle complicated structures.
• Easy to turn a JSON string into a Javascript object so we can

use the data (fetch can help us with that).

UW CSE 331 Winter 2022

Any Questions?

12

• Done:
– HW9 Basic Overview
– JSON

• Up Next:
– Fetch

UW CSE 331 Winter 2022

Fetch

13

• Used by JS to send requests to servers to ask for info.
– alternative to XmlHttpRequest

• Uses Promises:
– Promises capture the idea of “it’ll be finished later.”
– Asking a server for a response can be slow, so Promises

allow the browser to keep working instead of stopping to wait.
– Getting the data out is a little more complicated.

• Can use async/await syntax to deal with promises.

UW CSE 331 Winter 2022

What is a Request

14

• Recall from lecture:
– When you type a URL into your browser, it makes a GET

request to that URL, the response to that request is the
website itself (HTML, JS, etc..).

• A ”GET” request says “Hey server, can I get some info
about _____?”

– We’re going to make a request from inside Javascript to ask
for data about paths on campus.

– There are other kinds of requests, but we’re just using GET.
(It’s the default for fetch).

• Each “place” that a request can be sent is called an “endpoint.”
– Your Java server will provide multiple endpoints – one for

each kind of request that your React app might want to make.
• Find a path, get building info, etc...

UW CSE 331 Winter 2022

Fetch Demo

• Let’s see how a request is handled in action.

15
UW CSE 331 Winter 2022

Forming a Request

16

• Basic request with no extra data: “http://localhost:4567/getSomeData”
– A request to the “/getSomeData” endpoint in the server at “localhost:4567”
– “localhost” just means “on this same computer”
– “:4567” specifies a port number – every computer has multiple ports so

multiple things can be running at a given time.
• Sending extra information in a request is done with a query string:

– Add a “?”, then a list of “key=value” pairs. Each pair is separated by “&“.
– Query string might look like: “?start=CSE&end=KNE”

• Complete request looks like:
http://localhost:4567/findPath?start=CSE&end=KNE

• Sends a “/findPath” request to the server at “localhost:4567”, and
includes two pieces of extra information, named “start” and “end”.

• You don’t need to name your endpoints or query string parameters
anything specific, the above is just an example.

Server Address: http://localhost:4567

UW CSE 331 Winter 2022

Forming a Request

UW CSE 331 Winter 2022 17

Server Address: http://localhost:4567

http://localhost:4567/getSomeData

http://localhost:4567/findPath?start=CSE&end=KNE

http://washington.edu/about.....

Hostname Port* Endpoint

Query Params*

*Port and query params are technically optional

Sending the Request

18

let responsePromise = fetch(“http://localhost:4567/findPath?start=CSE&end=KNE”);

• The URL you pass to fetch() can include a query string if you need
to send extra data.

• responsePromise is a Promise object
– Once the Promise “resolves,” it’ll hold whatever is sent back

from the server.
• How do we get the data out of the Promise?

– We can await the promise’s resolution.
– await tells the browser that it can pause the currently-executing

function and go do other things. Once the promise resolves, it’ll
resume where we left off.

– Prevents the browser from freezing while the request is
happening

UW CSE 331 Winter 2022

Getting Useful Data

19

async sendRequest() {
let responsePromise = fetch(“...”);
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is
pause-able”

Will eventually
resolve to an
actual JS object
based on the
JSON string.

Once we have
the data, store it
in a useful place.

UW CSE 331 Winter 2022

Error Checking

20

async sendRequest() {
try {

let response = await fetch(“...”);
if (!response.ok) {

alert(“Error!”);
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert(“Error!”);

}
}

Every response has
a ‘status code’ (404
= Not Found). This
checks for 200 = OK

On a complete
failure (i.e. server
isn’t running) an
error is thrown.

UW CSE 331 Winter 2022

Things to Know
• Can only use the await keyword inside a function declared with

the async keyword.
– async keyword means that a function can be “paused” while

await-ing
• async functions automatically return a Promise that (will

eventually) contain(s) their return value.
– This means that if you need a return value from the function

you declared as async, you’ll need to await the function call.
– But that means that the caller also needs to be async.
– Therefore: generally best to not have useful return values

from async functions (in 331, there are lots of use cases
outside of this course, but can get complicated fast).

– Instead of returning, consider calling setState to store the
result and trigger an update.

21
UW CSE 331 Winter 2022

• Error checking is important.
– If you forget, the error most likely will disappear without

actually causing your program to explode.
– This is BAD! Silent errors can cause tricky bugs.
– Happens because errors don’t bubble outside of promises,

and the async function you’re inside is effectively “inside” a
promise.

– Means that if you don’t catch an exception, it’ll just disappear
as soon as your function ends.

22

More Things to Know

UW CSE 331 Winter 2022

Any Questions?

23

• Done:
– HW9 Basic Overview
– JSON
– Fetch

UW CSE 331 Winter 2022

Wrap-Up

24

• Don’t forget:
– HW8 due today (Thur. 3/3 @ 11:00pm)
– HW9 due a week later (Thur. 3/10 @ 11:00pm)

• Use your resources!
– Office Hours
– Links from HW specs
– React Tips & Tricks Handout (See “Resources” page on web)
– Other students (remember academic honesty policies: can’t

share/show/copy code, but discussion is great!)
– Google (carefully, always fully understand code you use)

UW CSE 331 Winter 2022

