
CSE 331
Software Design & Implementation

Bryan Lim / Ardi Madadi
based on slides and code by

Kevin Zatloukal and Andrew Gies
Winter 2022

Modern Web UIs

The Road So Far…
Done:
• First, look at basic HTML on its own

– No scripting, no dynamic content
– Just how content/structure is communicated to the browser

• Second, look at basic TypeScript (& JavaScript) on its own
– No browser, no HTML, just the language
– Get a feel for what's different from Java

• Third, a quick look at very basic user interactions
– Events, event listeners, and callbacks (more depth later)

Now:
• Fourth, use TypeScript with React with HTML

– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax

UW CSE 331 Winter 2022 2

Reminder: Our Stack

UW CSE 331 Winter 2022 3

HTML

JavaScript

(we write these)

(sent to browser to execute)

TypeScript

React
HTML Template

Compiled/Combined by the
Development Tooling

Making the Jump to React

• Write mostly TS, which is responsible for dynamically
generating the HTML on-the-fly.
• Fundamentally different way of thinking about websites.
• Allows code reuse (more or less impossible in HTML)
• Improves modularity.
• Designed to reduce coupling, increase cohesion. (Yay!)

• The webpage is made up of Components
• Component = a class that extends the Component class
• Components contain each other & form a tree structure

• Just like HTML tags

UW CSE 331 Winter 2022 4

The Contract

• React is "in charge" of the creation of the webpage.
– It calls methods in your components to do that
– You override those methods to control the behavior

• React can understand the data used to display the
website
– When data changes, it updates the page

• You can create multiple components
– Can reuse a single component multiple times
– Each component is a single "part" of the webpage

UW CSE 331 Winter 2022 5

Example 1

• The simplest source code to create a React website is these 3 files:
– index.html

• A very small amount of "necessary" HTML
• Most of the actual web content will be generated by the

TS/React code
– index.tsx

• Starting point of code – runs when the page loads
• Starts React

– App.tsx

• Our first component – the App component

• When we build the React app, all these files will be incorporated into
what is sent to the browser

UW CSE 331 Winter 2022 6

React

• Regain modularity by allowing custom tags

let app = (
<div>
<TitleBar name=“My App”/>

<EditPane rows=“80” />
</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Winter 2022 7

React

• Custom tags implemented using classes (like TS)

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Winter 2022 8

Example 2

register-react/…

CSE 331 Winter 2022 9

Structure of a React Application

10CSE 331 Winter 2022

Model

Listeners

HTML

data and invariants

presentation

eventsupdates

React State

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the HTML to match the

HTML produced by this call

CSE 331 Winter 2022 11

Callbacks in JS

UW CSE 331 Winter 2022 12

<html lang="en">

<head>
<title>HTML Button</title>

</head>

<body>
<script type="text/javascript">

function sayHello() {

alert("Hello, CSE 331!");
}

</script>
<button onclick="sayHello()">Click Me!</button>

</body>

</html>

1 – JS sayHello function embedded
in web page inside <script> tag

0 – web page is loaded
into browser

2 – Button created on page load;
sayHello() function registered to be

called on click event

3 – when button is clicked
function sayHello() is called
and alert box is displayed

Callbacks in JS

• This is the callback pattern
• The webpage is loaded into the web browser, and it

contains a JavaScript function and a button
• When the button is created, the JS function to be

called on a button click is registered with the button
– The function is not called at this time

• When the user clicks the button, it causes a user-
interface event to happen
– In response, the button calls the function that was

registered to be executed on a click event
• This is a callback

UW CSE 331 Winter 2022 13

Callbacks in React

– React terminology uses the term passing in
(instead of registering) a callback function when
we supply such a function as a prop to a child
component.

– We can propagate information upwards from child
component.
• We can pass down a callback

function from a parent
component as a prop.

• When called, the callback
function can then update the
fields (state) of the parent
component from the child component.

UW CSE 331 Winter 2022 14
Source: www.dotnettricks.com

Example 3

register-react2/…

CSE 331 Winter 2022 15

Event Listeners

Three ways to do this properly:

1. onClick={this.handleClick.bind(this)}

2. onClick={(e) => this.handleClick(e)}

3. Make handleClick a prop rather than a method:

handleClick: (e) => { … };

Then this.handleClick is okay. (The homework
assignment does this instead.)

CSE 331 Winter 2022 16

Structure of Example React App

17

Quarter
PickerApp

Class
Picker

State:
– quarter

onPick

Props:
– quarter

State:
– classes

quarter

onBack

React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

CSE 331 Winter 2022 18

Splitting the Model

• State should exist in the lowest common parent of
all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props

CSE 331 Winter 2022 19

Structure of a React Application

20CSE 331 Winter 2022

Model

Listeners

HTML

data and invariants

presentation

eventsupdates

Structure of a React Application

• Model must store all data necessary to generate the
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored
in the model
– e.g., every text field’s value must be part of some

React component’s state
– render produces

<input type=“text” value={…}>

CSE 331 Winter 2022 21

React setState

• setState does not update state instantly:

// this.state.x is 2
this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
CSE 331 Winter 2022 22

React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will
be hard to catch!

CSE 331 Winter 2022 23

React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast

CSE 331 Winter 2022 24

React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

• Much more in sections tomorrow…

CSE 331 Winter 2022 25

