
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2022

Callbacks, Events and Listeners/Observers
(original slides by Dan Grossman)

UW CSE 331 Winter 2022 1

Administrivia

• Final goal for our project is to add a graphical user
interface (GUI) to our hw7 map…

• …which means (these days) making a web app
• So need to learn just enough JS/TS/React for this

– Done: last Fri. JS/TS overview; weekend TS
video; this week React overview and examples

– Added to course web resources page: React tips
• HW8 – React map warmup – due next Thur.
• Today: a broader view of callbacks, events, and

listeners – key design idea in interactive apps
• Next week: HW9: connect the HW8 React GUI to

HW7 pathfinder data

UW CSE 331 Winter 2022 2

The limits of scaling

What prevents us from building huge,
intricate structures that work perfectly and
indefinitely?

– No friction
– No gravity
– No wear-and-tear

… it’s the difficulty of understanding them

So we split designs into sensible parts and
reduce interaction among the parts

– More cohesion within parts
– Less coupling across parts

UW CSE 331 Winter 2022 3

Design exercise

We will extend and modify this example throughout this lecture
– Six versions, each making a point J
– Provided code shows skeletal versions that compile
– Slides won’t make sense without the code and vice versa!!

Our application has various styled words
– A mutable word with a color (and font, size, weight, …)
– Some styled words are spell-checked against a dictionary
– Some styled words forbid the letter ‘Q’ [toy example J]

Want good coupling, cohesion, and reuse

4UW CSE 331 Winter 2022

Available libraries
To set up the example, we assume we have:

1. A Dictionary class with a static method providing dictionaries
for available languages
class Dictionary {

public static Dictionary findDictionary(String lang){…}
public boolean contains(String s){…}
…

}

2. StringBuffer to hold mutable text (in standard library)
– Methods insert, delete, and much more

3. Classes for all the styling of words
– Skeletal code just assumes a Color class

• E.g., new Color("red")
UW CSE 331 Winter 2022 5

A direct approach

Version 1 (see v1.java)

Three new classes:

• StyledWord
– Contains a StringBuffer and a Color

• SpellCheckedStyledWord

– Contains a StyledWord and a Dictionary

• NoQsStyledWord

– Contains a StyledWord

UW CSE 331 Winter 2022 6

Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD) indicates
“depends on” or “knows about”
– Simplistically: “any name mentioned in the source code”
– Not just fields, though we emphasize that here

7

SpellCheckedStyledWord NoQsStyledWord

StyledWord

UW CSE 331 Winter 2022

What’s wrong with v1?

Cohesion: Seems fine – each class has 1 purpose

Reuse: So-so
– Subclassing would avoid all those forwarding methods
– But is SpellCheckedStyledWord or NoQsStyledWord

a true subtype of StyledWord ?
• Depends on spec of StyledWord (likely not)

– Another reuse issue we will return to: No way to spell-check
and forbid ‘Q’

Coupling: Problematic…

UW CSE 331 Winter 2022 8

“When the text changes”
class SpellcheckedStyledWord {
…
private void performSpellcheck(){…}
public void addLetter(char c, int pos) {

word.addLetter(c,position);
performSpellcheck();

}

SpellCheckedStyledWord and NoQsStyledWord need to
know whenever the text changes

– addLetter and deleteLetter
– Hopefully no other ones we forgot!
– But concept of “text changed” is something we want to leave

to StyledWord
– To avoid this coupling, want the “text changed” event to be

managed by StyledWord

UW CSE 331 Winter 2022 9

Moving “when the text changes”

Version 2 (see v2.java)
– (Not good but a stepping-stone to version 3)

Let’s make StyledWord responsible for any necessary spell-
checking or Q-removal

– A StyledWord’s state now includes:
• A Spellchecker if there is one
• A QRemover if there is one

– When the word changes, pass this to the spell-checker
and/or Q-remover

UW CSE 331 Winter 2022 10

Version 2 MDD

Hmm, more dependencies, but less coupling via the dependencies
we had…

11

SpellChecker QRemover

StyledWord

UW CSE 331 Winter 2022

V2 uses callbacks
class StyledWord {

…
private void afterWordChange() {
if(spellchecker != null)

spellchecker.performSpellcheck(this);
if(qremover != null)

qremover.removeQs(this);
}

• Why do we pass a Spellchecker or Qremover to the
StyledWord constructor?

• All the StyledWord does with those objects is call
performSpellcheck(this) or removeQs(this)

• performSpellcheck and removeQs are callbacks – code
passed in for the purpose of being called some time later

UW CSE 331 Winter 2022 12

Callbacks

Callback: “Code” provided by client to be used by library
• In Java, pass an object with the “code” in a method

Synchronous callbacks:
• Examples: HashMap calls its client’s hashCode, equals
• Useful when library needs the callback result immediately

Asynchronous callbacks:
• Examples: v2-6; GUI listeners (upcoming homework)
• Register to indicate interest and where to call back
• Useful when the callback should be performed later, when

some interesting event occurs

13UW CSE 331 Winter 2022

What’s wrong with v2?

Cohesion: Worse: StyledWord shouldn’t be directly tracking what
needs spell-checking or Q-removal

Reuse: Better, but work-in progress
– No more forwarding methods
– Can spell-check or Q-remove or both
– But what if there’s a third (or fourth or…) thing we want to do

later when some words change

Coupling: Solved our V1 coupling problem, but made our MDD
worse

UW CSE 331 Winter 2022 14

The key decoupling insight

• StyledWord depends on Spellchecker and Qremover in
v2, but does not need to know anything about what these
classes do
– Just needs to call the call-backs when an event occurs (the

text changes)

• Weaken the dependency by introducing a much weaker
specification in the form of an interface or abstract class
– The interface implemented by things that can be notified

when the text changes

interface WordChangeListener {
public void onWordChange(StyledWord w);

}
UW CSE 331 Winter 2022 15

v3: take a WordChangeListener

class StyledWord {
private StringBuffer text = new StringBuffer();
private Color color = new Color("black");
private WordChangeListener listener;
public StyledWord(WordChangeListener l) {

listener = l;
}
private void afterWordChange() {

listener.onWordChange(this);
}
public void addLetter(char c, int position) {

text.insert(position,c);
afterWordChange();

}

UW CSE 331 Winter 2022 16

v3: implement WordChangeListener

class Spellchecker implements WordChangeListener {
…
public void onWordChange(StyledWord word) {

performSpellcheck(word);
}

}

class QRemover implements WordChangeListener {
…
public void onWordChange(StyledWord word) {

removeQs(word);
}

}

UW CSE 331 Winter 2022 17

A better MDD

• WordChangeListener is simple and weak

UW CSE 331 Winter 2022 18

SpellChecker QRemover

StyledWord

WordChangeListener

Judging v3

Cohesion: Good!

Coupling: Good!

Reuse: Better!
– Better than v2: Can use any WordChangeListener -- no

need for to know what they are
• See ChangeCounter in v3.java

– Worse than v2: Back to allowing only one listener/callback
for any particular StyledWord

• Hence v4, an “easy fix”

UW CSE 331 Winter 2022 19

v4: allow multiple listeners

class StyledWord {
…
private List<WordChangeListener> listeners =

new ArrayList<WordChangeListener>();
public StyledWord() { }
public StyledWord(WordChangeListener l) {

listeners.add(l);
}
public StyledWord(Collection<? extends

WordChangeListener> c) {
listeners.addAll(c);

}
private void afterWordChange() {

for(WordChangeListener listener : listeners) {
listener.onWordChange(this);

}
}

UW CSE 331 Winter 2022 20

Achievement unlocked: Observer Pattern

• v4 has all the advantages of v3 and allows any number of
listeners

• Cohesion: StyledWord handles styled text while supporting
listeners; each listener does its thing

• Coupling: Only via the weakly specified listener interface

This is the observer pattern
– Words can be observed via observers/listeners that are

notified via callbacks when an event (of interest) occurs
– Pattern: Something used over-and-over in software, worth

recognizing when appropriate and using common terms

UW CSE 331 Winter 2022 21

v5: dynamic addition/deletion

• No good reason for StyledWord to require the listeners to be
fixed at object-creation time
– It “doesn’t care” what the listeners are; just responsible for

notifying them when the text changes

• Clients may wish to add and/or remove listeners
– Example: Change language for spell-checking
– Example: Start counting changes at some point

• Version 5 does this and is the common approach
– Mutator methods that add/remove listeners
– More flexible for clients; up to them to use it wisely

UW CSE 331 Winter 2022 22

v5: final version of StyledWord

class StyledWord {
…
private List<WordChangeListener> listeners =

new ArrayList<WordChangeListener>();

public StyledWord() { }
public void addListener(WordChangeListener l) {

listeners.add(l);
}
public void removeListener(WordChangeListener l) {

listeners.remove(l);
}
private void afterWordChange() {

for(WordChangeListener listener : listeners) {
listener.onWordChange(this);

}
}

UW CSE 331 Winter 2022 23

A meta-lesson

• We could have just showed you v5 and told you to parrot it and
recognize it in industry

• A powerful idiom refined by decades of wisdom, unlikely to be
reinvented this well by a relative novice

• But better to appreciate its good design in contrast to earlier
versions
– And start to develop the ability to judge a design and identify

approaches to improve it
– And don’t be afraid to redesign

UW CSE 331 Winter 2022 24

Bonus version: v6

• Actually, v1-v5 all contain another “classic” design weakness:
– Don’t mix appearance and content

• This method has poor cohesion, by “hard-wiring” specific colors
– or even that coloring is the output – into the actual spell-check
method:

public void performSpellcheck(StyledWord word) {
if(dictionary.contains(word.getText()))

word.setColor(new Color("black"));

else
word.setColor(new Color("red"));

}

UW CSE 331 Winter 2022 25

v6 improves this

• Make the spell-checker parameterized over a color-choice
– Even better would be an arbitrary text-restyling

• Separate “does it spell-check” from “what to do if it does/doesn’t”

• Both lead to better cohesion

• See the code
– Not directly related to callbacks/events/listeners
– But helps show why graphical applications tend to have lots

of parameters and levels of abstraction

UW CSE 331 Winter 2022 26

A note on React

• In React an observer is a function that we want to
have called when an event happens

• The observer function is passed down to the
component that can generate the event as an
element of the generating component’s props
– This is React’s version of registering a listener

• When an event happens, the generating component
calls the function that was part of its props
– This is the callback

UW CSE 331 Winter 2022 27

