CSE 331
Software Design & Implementation

Hal Perkins
Winter 2022

Callbacks, Events and Listeners/Observers
(original slides by Dan Grossman)

UW CSE 331 Winter 2022



Administrivia

 Final goal for our project is to add a graphical user
interface (GUI) to our hw7 map...

« ...which means (these days) making a web app
* So need to learn just enough JS/TS/React for this

— Done: last Fri. JS/TS overview; weekend TS
video; this week React overview and examples

— Added to course web resources page: React tips
« HW8 — React map warmup — due next Thur.

« Today: a broader view of callbacks, events, and
listeners — key design idea in interactive apps

 Next week: HW9: connect the HW8 React GUI to
HWY7 pathfinder data

UW CSE 331 Winter 2022



The limits of scaling

What prevents us from building huge,
intricate structures that work perfectly and
indefinitely?

— No friction
— No gravity
— No wear-and-tear

... it's the difficulty of understanding them

So we split designs into sensible parts and
reduce interaction among the parts

— More cohesion within parts
— Less coupling across parts

UW CSE 331 Winter 2022




Design exercise

We will extend and modify this example throughout this lecture
— Six versions, each making a point ©
— Provided code shows skeletal versions that compile
— Slides won’t make sense without the code and vice versa!!

Our application has various styled words
— A mutable word with a color (and font, size, weight, ...)
— Some styled words are spell-checked against a dictionary

— Some styled words forbid the letter ‘Q’ [toy example ©]

Want good coupling, cohesion, and reuse

UW CSE 331 Winter 2022



Avallable libraries

To set up the example, we assume we have:

1. ADictionary class with a static method providing dictionaries
for available languages
class Dictionary {

public static Dictionary findDictionary(String lang) {..}

public boolean contains (String s) {..}

}
2. StringBuffer to hold mutable text (in standard library)
— Methods insert, delete, and much more

3. Classes for all the styling of words
— Skeletal code just assumes a Color class

« E.g.,, new Color("red")

UW CSE 331 Winter 2022 5



A direct approach

Version 1 (see v1.java)

Three new classes:

e StyledWord
— Contains a StringBuffer and a Color

e SpellCheckedStyledWord
— Contains a StyledWord and a Dictionary

e NoQsStyledWord
— Contains a StyledWord

UW CSE 331 Winter 2022



Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD) indicates
“depends on” or “knows about”

— Simplistically: “any name mentioned in the source code”
— Not just fields, though we emphasize that here

StyledWord
SpellCheckedStyledWord NoQsStyledWord

UW CSE 331 Winter 2022



What's wrong with v17?

Cohesion: Seems fine — each class has 1 purpose

Reuse: So-so
— Subclassing would avoid all those forwarding methods

— Butis SpellCheckedStyledWord or NoQsStyledWord
a true subtype of StyledWord ?
* Depends on spec of StyledWord (likely not)

— Another reuse issue we will return to: No way to spell-check
and forbid ‘Q’

Coupling: Problematic...

UW CSE 331 Winter 2022



“When the text changes”

class SpellcheckedStyledWord ({

private void performSpellcheck() {..}

public void addLetter (char c, int pos) {
word.addLetter (c,position) ;
performSpellcheck() ;

}

SpellCheckedStyledWord and NoQsStyledWord need to
know whenever the text changes

addLetter and deleteletter
Hopefully no other ones we forgot!

But concept of “text changed” is something we want to leave
to StyledWord

To avoid this coupling, want the “text changed” event to be
managed by StyledWord

UW CSE 331 Winter 2022 9



Moving “when the text changes”

Version 2 (see v2. java)
— (Not good but a stepping-stone to version 3)

Let's make StyledWord responsible for any necessary spell-
checking or Q-removal

— A StyledWord'’s state now includes:
A Spellchecker ifthereis one
* A QrRemover if there is one

— When the word changes, pass this to the spell-checker
and/or Q-remover

UW CSE 331 Winter 2022 10



Version 2 MDD

Hmm, more dependencies, but less coupling via the dependencies
we had...

StyledWord

i

SpellChecker QRemover

UW CSE 331 Winter 2022 11



V2 uses callbacks

class StyledWord {

private void afterWordChange () {
if (spellchecker !'= null)
spellchecker.performSpellcheck (this) ;
if (gremover !'= null)
gremover .removeQs (this) ;

}

« Why do we pass a Spellchecker or Qremover to the
StyledWord constructor?

* Allthe styledWord does with those objects is call
performSpellcheck (this) Or removeQs (this)

« performSpellcheck and removeQs are callbacks — code
passed in for the purpose of being called some time later

UW CSE 331 Winter 2022

12



Callbacks

Callback: “Code” provided by client to be used by library
« In Java, pass an object with the “code” in a method

Synchronous callbacks:
« Examples: HashMap calls its client’'s hashCode, equals

« Useful when library needs the callback result immediately

Asynchronous callbacks:
« Examples: v2-6; GUI listeners (upcoming homework)

* Register to indicate interest and where to call back

« Useful when the callback should be performed later, when
some interesting event occurs

UW CSE 331 Winter 2022 13



What's wrong with v27?

Cohesion: Worse: StyledWord shouldn’t be directly tracking what
needs spell-checking or Q-removal

Reuse: Better, but work-in progress
— No more forwarding methods
— Can spell-check or Q-remove or both

— But what if there’s a third (or fourth or...) thing we want to do
later when some words change

Coupling: Solved our V1 coupling problem, but made our MDD
worse

UW CSE 331 Winter 2022 14



The key decoupling insight

« StyledWord depends on Spellchecker and Qremover in
v2, but does not need to know anything about what these
classes do

— Just needs to call the call-backs when an event occurs (the
text changes)

 Weaken the dependency by introducing a much weaker
specification in the form of an interface or abstract class

— The interface implemented by things that can be notified
when the text changes

interface WordChangelistener {

public void onWordChange (StyledWord w) ;

UW CSE 331 Winter 2022 15



v3: take a WordChangeListener

class StyledWord {

private StringBuffer text = new StringBuffer():;

private Color color = new Color("black");

private WordChangelListener listener;

public StyledWord (WordChangelListener 1) ({
listener = 1;

}

private void afterWordChange () {
listener.onWordChange (this) ;

}

public void addLetter (char c, int position) {
text.insert (position,c) ;
afterWordChange() ;

UW CSE 331 Winter 2022

16



v3: implement WordChangeListener

class Spellchecker implements WordChangeListener ({

public void onWordChange (StyledWord word) ({
performSpellcheck (word) ;

class QRemover implements WordChangeListener {

public void onWordChange (StyledWord word) ({

removeQs (word) ;

UW CSE 331 Winter 2022 17



A better MDD

WordChangeListener is simple and weak

WordChangeListener

T

StyledWord

SpellChecker

UW CSE 331 Winter 2022

QRemover

18



Judging v3

Cohesion: Good!
Coupling: Good!

Reuse: Better!

— Better than v2: Can use any WordChangeListener --no
need for to know what they are

« See ChangeCounter inv3.java

— Worse than v2: Back to allowing only one listener/callback
for any particular StyledWord

* Hence v4, an “easy fix”

UW CSE 331 Winter 2022 19



v4: allow multiple listeners

class StyledWord {

private List<WordChangelistener> listeners =
new ArraylList<WordChangelistener>() ;

public StyledWord() { }

public StyledWord (WordChangelListener 1) {
listeners.add (1) ;

}

public StyledWord(Collection<? extends

WordChangeListener> c¢) {

listeners.addall (c) ;

}

private void afterWordChange () {
for (WordChangelistener listener : listeners) ({

listener.onWordChange (this) ;

}

UW CSE 331 Winter 2022 20



Achievement unlocked: Observer Pattern

* v4 has all the advantages of v3 and allows any number of
listeners

« Cohesion: styledWord handles styled text while supporting
listeners; each listener does its thing

« Coupling: Only via the weakly specified listener interface

This is the observer pattern

— Words can be observed via observers/listeners that are
notified via callbacks when an event (of interest) occurs

— Pattern: Something used over-and-over in software, worth
recognizing when appropriate and using common terms

UW CSE 331 Winter 2022

21



vd: dynamic addition/deletion

No good reason for StyledWord to require the listeners to be
fixed at object-creation time

— It “doesn’t care” what the listeners are; just responsible for
notifying them when the text changes

Clients may wish to add and/or remove listeners
— Example: Change language for spell-checking
— Example: Start counting changes at some point

Version 5 does this and is the common approach
— Mutator methods that add/remove listeners
— More flexible for clients; up to them to use it wisely

UW CSE 331 Winter 2022

22



va: final version of StyledWord

class StyledWord {

private List<WordChangelistener> listeners =
new ArraylList<WordChangelistener>() ;

public StyledWord() { }

public void addListener (WordChangeListener 1) ({
listeners.add(1l) ;

}

public void removelistener (WordChangelListener 1) ({
listeners.remove(l) ;

}

private void afterWordChange () ({
for (WordChangelistener listener : listeners) ({

listener.onWordChange (this) ;

}

UW CSE 331 Winter 2022

23



A meta-lesson

 We could have just showed you v5 and told you to parrot it and
recognize it in industry

« A powerful idiom refined by decades of wisdom, unlikely to be
reinvented this well by a relative novice

« But better to appreciate its good design in contrast to earlier
versions

— And start to develop the ability to judge a design and identify
approaches to improve it

— And don’t be afraid to redesign

UW CSE 331 Winter 2022 24



Bonus version: vob

« Actually, v1-v5 all contain another “classic” design weakness:
— Don’t mix appearance and content

« This method has poor cohesion, by “hard-wiring” specific colors
— or even that coloring is the output — into the actual spell-check

method:

public void performSpellcheck (StyledWord word) ({
if (dictionary.contains (word.getText () ))
word.setColor (new Color("black"))

else
word.setColor (new Color("red")) ;

UW CSE 331 Winter 2022 25



vb improves this

Make the spell-checker parameterized over a color-choice
— Even better would be an arbitrary text-restyling

Separate “does it spell-check” from “what to do if it does/doesn’t’

Both lead to better cohesion

See the code
— Not directly related to callbacks/events/listeners

— But helps show why graphical applications tend to have lots
of parameters and levels of abstraction

UW CSE 331 Winter 2022 26



A note on React

 |n React an observer is a function that we want to
have called when an event happens

* The observer function is passed down to the
component that can generate the event as an
element of the generating component’s props

— This is React’s version of registering a listener

 When an event happens, the generating component
calls the function that was part of its props

— This is the callback

UW CSE 331 Winter 2022 27



