
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2022

Subtypes and Subclasses

UW CSE 331 Winter 2022 1

Administrivia (1)
• HW5 part 2 due tomorrow night (plus late day if available)

– Don’t get overly ambitious – no generics for now, etc.
– Remember main Graph ADT should not assume that

node/edge labels will always be comparable
• Client code should compare/sort as needed

– Don’t overuse strings - store data as data, not printable
strings, unless it really is a string

– Remember to disable expensive checkRep()s in
commit that has the final hw5 part 2 tag on it

• And *get the tag right* ! It’s in the hw5-2 assignment
– Don’t blindly import libraries that IntelliJ “suggests”

• Reminder: DO NOT submit work found on the web or
written by anyone else as your own work. It’s not, and it’s
a problem. (We have some of this on hw5-1 already)
– If you need help please reach out to course staff

UW CSE 331 Winter 2022 2

Administrivia (2)

• Midterm exam: thanks everyone for helping things go
so smoothly. We’ll try to get it graded fairly soon, but
probably won’t be done until next week.

• Sections tomorrow: hw6 (data files, graph search, etc.)
– Starter code will be pushed to repos later tonight

UW CSE 331 Winter 2022 3

What is subtyping?

Sometimes “every B is an A”
– Example: In a library database:

• Every book is a library holding
• Every CD is a library holding

Subtyping expresses this
– “B is a subtype of A” means:

“every object that satisfies the rules for a B
also satisfies the rules for an A”

Goal: code written using A's specification operates correctly even if
given a B

– Plus: clarify design, share tests, (sometimes) share code

4

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

UW CSE 331 Winter 2022

Subtypes are substitutable

Subtypes are substitutable for supertypes
– Instances of subtype won't surprise client by failing to satisfy

the supertype's specification
– Instances of subtype won't surprise client by having more

expectations than the supertype's specification
– i.e., a client that expects a Shape will work fine if given a

Circle

We say that B is a true subtype of A if B has a stronger
specification than A

– This is not the same as a Java subtype (B extends A)
– Java subtypes that are not true subtypes are confusing and

dangerous
• But unfortunately fairly common poor-design L

5UW CSE 331 Winter 2022

Subtyping vs. subclassing

Substitution (subtype) — a specification notion
– B is a subtype of A iff an object of B can masquerade as an

object of A in any context
– Any fact about an A object is true about a B object
– Similar to satisfiability (behavior of a B is a subset of A’s spec)

Inheritance (subclass) — an implementation notion
– Factor out repeated code
– To create a new class, write only the differences

Java purposely merges these notions for classes:
– Every subclass is a Java subtype

• But not necessarily a true subtype
– (Java compiler can’t check or guarantee that B is a true subtype of A)

UW CSE 331 Winter 2022 6

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products…

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice() {

return price;
}

public int getTax() {
return (int)(getPrice() * 0.096);

}
…

}

... and we need a class for products that are on sale
7UW CSE 331 Winter 2022

We know: don’t copy code!

We would never dream of cutting and pasting like this:

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice() {

return (int)(price*factor);
}
public int getTax() {

return (int)(getPrice() * 0.096);
}
…

}

8UW CSE 331 Winter 2022

Inheritance makes small extensions small

Much better:

class SaleProduct extends Product {
private float factor;
@Override
public int getPrice() {
return (int)(super.getPrice()*factor);

}
}

9UW CSE 331 Winter 2022

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods
– In implementation

• Simpler maintenance: fix bugs once
– In specification

• Clients who understand the superclass specification need
only study novel parts of the subclass

– Modularity: can ignore private fields and methods of
superclass (if properly defined)

– Differences not buried under mass of similarities

• Ability to substitute new implementations
– No client code changes required to use new subclasses

10UW CSE 331 Winter 2022

Subclassing can be misused
• Poor planning can lead to a muddled class hierarchy

– Relationships might not match untutored intuition
• Poor design can produce subclasses that depend on many

implementation details of superclasses
• Changes in superclasses can break subclasses if they are tightly

coupled
– “fragile base class problem”

• Subtyping and implementation inheritance are orthogonal!
– Subclassing gives you both
– Sometimes you want just one

• Interfaces: subtyping without inheritance
• Composition: use implementation without subtyping

– Can seem less convenient, but often better long-term
11UW CSE 331 Winter 2022

Is every square a rectangle?
interface Rectangle {
// effects: fits shape to given size:
// thispost.width = w, thispost.height = h
void setSize(int w, int h);

}
interface Square extends Rectangle {…}

Which is the best option for Square’s setSize specification?
1. // requires: w = h

// effects: fits shape to given size
void setSize(int w, int h);

2. // effects: sets all edges to given size
void setSize(int edgeLength);

3. // effects: sets this.width and this.height to w
void setSize(int w, int h);

4. // effects: fits shape to given size
// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;

12UW CSE 331 Winter 2022

Square, Rectangle Unrelated (Java)

Square is not a (true subtype of) Rectangle:
– Rectangles are expected to have a width and height

that can be mutated independently
– Squares violate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
– Squares are expected to have equal widths and heights
– Rectangles violate that expectation, could surprise client

Inheritance is not always intuitive
– Benefit: it forces clear thinking and prevents errors

Solutions:
– Make them unrelated (or siblings)
– Make them immutable (!)

• Recovers elementary-school intuition

13

!"#$%&'("

)*+%,"

)*+%,"

!"#$%&'("

)-%."

)*+%," !"#$%&'("

UW CSE 331 Winter 2022

Inappropriate subtyping in the JDK
class Hashtable<K,V> {
public void put(K key, V value){…}
public V get(K key){…}

}

// Keys and values are strings.
class Properties extends Hashtable<Object,Object> {

public void setProperty(String key, String val) {
put(key,val);

}
public String getProperty(String key) {
return (String)get(key);

}
}

14UW CSE 331 Winter 2022

Properties p = new Properties();
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
– Keys and values are Strings

But client can treat Properties as a Hashtable
– Can put in arbitrary content, break rep invariant

From Javadoc:
Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised" Properties object
that contains a non-String key or value, the call will fail.

15UW CSE 331 Winter 2022

Solution 1: Generics

Bad choice:
class Properties extends Hashtable<Object,Object> {

…
}
Better choice:
class Properties extends Hashtable<String,String> {

…
}

JDK designers deliberately didn’t do this. Why?
– Backward-compatibility (Java didn’t used to have generics)
– Postpone talking about generics: upcoming lecture

• But only Hashtable<Object,Object> is compatible with
all clients that might exist

16UW CSE 331 Winter 2022

Solution 2: Composition

class Properties {
private Hashtable<Object, Object> hashtable;

public void setProperty(String key, String value) {
hashtable.put(key,value);

}

public String getProperty(String key) {
return (String) hashtable.get(key);

}

…
}

17UW CSE 331 Winter 2022

Substitution principle for classes
If B is a subtype of A, a B can always be substituted for an A

Any property guaranteed by supertype A must be guaranteed by
subtype B

– Anything provable about an A is provable about a B
– If an instance of subtype is treated purely as supertype (only

supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated

Subtype B is permitted to strengthen properties and add properties
– An overriding method must have a stronger (or equal) spec
– Fine to add new methods (that preserve invariants)

Subtype B is not permitted to weaken the spec
– No method removal
– No overriding method with a weaker spec

18UW CSE 331 Winter 2022

Substitution principle for methods
Constraints on methods

– For each supertype method, subtype must have such a method
• Could be inherited or overridden

Each overriding method must strengthen (or match) the spec:
– Ask nothing extra of client (“weaker precondition”)

• Requires clause is at most as strict as in supertype’s method
– Guarantee at least as much (“stronger postcondition”)

• Effects clause is at least as strict as in the supertype method
• No new entries in modifies clause
• Promise more (or the same) in returns clause
• Throws clause must indicate fewer (or same) possible

exception types, but nothing new

19UW CSE 331 Winter 2022

Spec strengthening: argument/result types

Method inputs:
– Argument types in A.foo may be

replaced with supertypes in B.foo
(“contravariance”)

– Places no extra demand on the clients
– But Java does not allow such overriding

• (Why?)
Method results:

– Result type of A.foo may be replaced by
a subtype in B.foo (“covariance”)

– No new exceptions (for values in the domain)
– Existing exceptions can be replaced with subtypes

(None of this violates what client can rely on)

20

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

UW CSE 331 Winter 2022

Substitution exercise

Suppose we have a method which, when given one product,
recommends another:

class Product {
Product recommend(Product ref);

}
Which of these are possible forms of this method in SaleProduct
(a true subtype of Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref);
throws NoSaleException;

// OK

// OK, but is Java
overloading

// bad

// bad

21UW CSE 331 Winter 2022

Java subtyping

• Java types:
– Defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and
B implements A declarations

• In a Java subtype, each corresponding method has:
– Same argument types

• If different, overloading: unrelated methods
– Compatible (covariant) return types

• Added to Java several years after initial release, not
reflected in (e.g.) clone

– No additional declared exceptions

22UW CSE 331 Winter 2022

Java subtyping guarantees
A variable’s run-time type (i.e., the class of its run-time value) is a Java
subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error
If a variable of declared (compile-time) type T1 holds a reference to
an object of actual (runtime) type T2, then T2 must be a Java
subtype of T1

(A type T is considered to be a subtype of itself to simplify things)

Corollaries:
– Objects always have implementations of the methods specified

by their declared type
– If all subtypes are true subtypes, then all objects meet the

specification of their declared type

This rules out a huge class of bugs
23UW CSE 331 Winter 2022

Clients can still infer implementation details

• Client use of == can reveal reuse of values
– Return existing immutable value rather than

creating a new copy
• Client use of iterator can reveal whether data is

stored in any particular order (sorted or not, …)
• Client use of subclassing can reveal self-calls in

implementation (example below)

• Lesson: don’t do this!
• Clients should not observe/depend on behavior not

promised by the spec

UW CSE 331 Winter 2022 24

Inheritance can break encapsulation
public class InstrumentedHashSet<E>

extends HashSet<E> {
private int addCount = 0; // count # insertions
public InstrumentedHashSet(Collection<? extends E> c){

super(c);
}
public boolean add(E o) {

addCount++;
return super.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() { return addCount; }

}
25UW CSE 331 Winter 2022

Dependence on implementation
What does this code print?
InstrumentedHashSet<String> s =

new InstrumentedHashSet<String>();
System.out.println(s.getAddCount());
s.addAll(Arrays.asList("CSE", "331"));
System.out.println(s.getAddCount());

• Answer depends on implementation of addAll in HashSet
– Different implementations may behave differently!
– If HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:
– “Adds all of the elements in the specified collection to this collection.”
– Does not specify whether it calls add

• Lessons:
– Subclassing often requires designing for extension
– Clients should not depend on unspecified implementation behavior

// 0

// 4?!

26UW CSE 331 Winter 2022

Solutions – how to count inserts

1. Change spec of HashSet (eliminate ambiguity)
– Indicate all self-calls
– Less flexibility for implementers of specification
– Most clients don’t care

2. Avoid spec ambiguity by avoiding self-calls
a) “Re-implement” methods such as addAll

• Requires re-implementing methods
b) Use a wrapper

• No longer a subtype (unless an interface is handy)
• Bad for callbacks, equality tests, etc.
• But avoids dependency on HashSet spec

27UW CSE 331 Winter 2022

Solution 2b: composition

public class InstrumentedHashSet<E> {
private final HashSet<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++; return s.add(o);
}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() { return addCount; }
// ... and every other method specified by HashSet<E>

}

The implementation
no longer matters

Delegate

28UW CSE 331 Winter 2022

Composition (wrappers, delegation)

Implementation reuse without inheritance

• Example of a “wrapper” class

• Easy to reason about; self-calls are irrelevant

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):
– Does not preserve subtyping
– Tedious to write (your IDE should help you)
– May be hard to apply to callbacks, equality tests

29UW CSE 331 Winter 2022

Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore
– So can't easily substitute it

• It may be a true subtype of HashSet
– But Java doesn't know that!
– Java requires declared relationships
– Not enough just to meet specification

• Interfaces to the rescue
– Can declare that we implement interface Set
– If such an interface exists

30UW CSE 331 Winter 2022

Interfaces reintroduce Java subtyping
public class InstrumentedHashSet<E> implements Set<E>{
private final Set<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++;
return s.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() { return addCount; }
// ... and every other method specified by Set<E>

}

Avoid encoding
implementation details

What’s bad about this constructor?

InstrumentedHashSet(Set<E> s) {
this.s = s;
addCount = s.size();

}

31UW CSE 331 Winter 2022

Interfaces and abstract classes

Provide interfaces for your functionality
– Clients code to interfaces rather than concrete classes
– Allows different implementations later
– Facilitates composition, wrapper classes

• Basis of lots of useful, clever techniques
• We'll see more of these later

Consider also providing helper/template abstract classes
– Can minimize number of methods that new implementation

must provide by providing some implementations in abs. class
– Makes writing new implementations much easier
– Optional – not needed to use interfaces or to create different

implementations of an interface

32UW CSE 331 Winter 2022

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>

implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>

extends AbstractCollection<E>
implements List<E>

// an old friend...
class ArrayList<E> extends AbstractList<E>

33UW CSE 331 Winter 2022

Why interfaces instead of classes?

Java design decisions:
– A class has exactly one superclass
– A class may implement multiple interfaces
– An interface may extend multiple interfaces

Justification for Java decisions:
– Multiple superclasses are difficult to use and to implement
– Multiple interfaces + single superclass gets most of the

benefit

34UW CSE 331 Winter 2022

Pluses and minuses of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation
– A subclass may wind up depending on unspecified details of

the implementation of its superclass
• example: pattern of self-calls

– Subclass may need to evolve in tandem with superclass
• Okay within a package where implementation of both is

under control of same programmer

• Authors of superclass should design and document self-use, to
simplify extension
– Otherwise, avoid implementation inheritance and have

clients use composition instead

35UW CSE 331 Winter 2022

