
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2022

Module Design and General Style Guidelines

UW CSE 331 Winter 2022 1

Style

“Use the active voice.”
“Omit needless words.”

“Don't patch bad code - rewrite it.”
“Make sure your code 'does nothing'

gracefully.”

UW CSE 331 Winter 2022 2

The limits of scaling

Can’t built arbitrarily large physical structures
that work perfectly and indefinitely

– friction, gravity, wear-and-tear

Software has no such problems!
So what prevents arbitrarily large software?

… it’s the difficulty of understanding it!

UW CSE 331 Winter 2022 3

The problem in software is interdependence (“coupling”) between
different parts of the code

– Coupling makes it hard to understand one part of the code
without understanding many other parts and how they all
interact

Modules

We make software easier to understand by breaking it into pieces that
can be understood (and built) separately

A module is a unit in a software system
Class, ADT, package, layer, …

Modular design is the heart of software design
– What modules
– What are their specifications
– How they interact
– But not the implementations of the modules

Each module respects other modules’ abstraction barriers and
enforces its own

UW CSE 331 Winter 2022 4

Goals of modular design

Decomposable – can be broken down into modules
to reduce complexity and allow teamwork

Composable – “Having divided to conquer, we must
reunite to rule [M. Jackson].”

Understandable – one module can be examined,
reasoned about, developed, etc. in isolation

Continuity – a small change in the requirements
should affect a small number of modules

Isolation – an error in one module should be as
contained as possible

UW CSE 331 Winter 2022 5

Most important design issues

Cohesion = internal consistency
• A property of the module specification

– And applies to implementations
• Want module to be self-contained, independent, and with a

single, well-defined purpose

Coupling = dependency between components
• A property of module implementation
• Is usually low when each subpart has good cohesion

Goal: increase cohesion, decrease coupling

UW CSE 331 Winter 2022 6

Cohesion

Separation of concerns
For methods: do one thing well

– Compute a value, let client decide what to do with it
– Observe or mutate; don’t do both
– Don’t print as a side effect of another operation
– “Flag” variables are often a symptom of poor cohesion

For ADTs: provide a single abstraction, represent a single concept
Poor cohesion limits future possible uses
If your module violates this principle, redesign it

– Refactor a method into multiple simpler methods
– Break an ADT or module into separate ones, each of which

represents a single abstraction or concept

UW CSE 331 Winter 2022 7

Coupling
How are modules dependent on one another?

– Statically (in the code)? Dynamically (at run-time)? More?
– Ideally, split design into parts that don't interact much

If modules are highly coupled you must reason about them as
though they are a single, larger module

An application

MY
FINAL

PROJECT

A poor decomposition
(parts strongly coupled)

MY

FINAL PROJECT

A better decomposition
(parts weakly coupled)

MY

FINECT PROJAL

UW CSE 331 Winter 2022 8

Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark
path, forever will it dominate
your destiny, consume you it will

UW CSE 331 Winter 2022 9

God classes

God class: a class that hoards much of the data or functionality of a
system

– Poor cohesion – little thought about why all the elements are
placed together

– Reduces coupling but only by collapsing multiple modules
into one (which replaces dependences between modules
with dependences within a module)

A god class is an example of an anti-pattern: a known bad way of
doing things

UW CSE 331 Winter 2022 10

Class design ideals

Cohesion: already discussed

Coupling: already discussed

Completeness: Every class should present a complete interface

Consistency: In names, param/returns, ordering, and behavior

UW CSE 331 Winter 2022 11

Completeness
Include important methods to make a class easy to use

– Especially in public library classes/APIs
Counterexamples:

• A mutable collection with add but no remove
• A tool object with a setHighlighted method to select

it, but no setUnhighlighted method to deselect it
• Date class with no date-arithmetic operations

Also:
– Objects that have a natural ordering should implement
Comparable

– Usually implement (override) equals (and therefore
hashCode) – more about these in next lecture(s)

– Always override Object.toString (a superclass may
have done this for you)

UW CSE 331 Winter 2022 12

Don’t include the kitchen sink
Don’t include everything you can possibly think of

– If you include it, you’re stuck with it forever
(even if almost nobody ever uses it)

– Don’t include compound operations
(client can call two operations)

– Sometimes use cases mean rethinking completeness: does
remove always make sense for a mutable collection if it is
ghastly expensive and never used?

Tricky balancing act that depends on taste
Err on the side of omitting an operation

– You can always add it later if you really need it

“Everything should be made as simple
as possible, but not simpler.”

- EinsteinUW CSE 331 Winter 2022

Consistency
A module should have consistent names, parameters in the same
order, and consistent behavior

Counterexamples:
setFirst(int index, String value)
setLast(String value, int index)

Date/GregorianCalendar use 0-based months

String methods: equalsIgnoreCase,
compareToIgnoreCase;

but regionMatches(boolean ignoreCase)

Collection size:
String.length(), array.length, collection.size()

UW CSE 331 Winter 2022 14

Good names
Choosing good names is important (and takes work)
EJ Tip #68: Adhere to generally accepted naming conventions
• Class names: generally nouns describing the type (often ADT) or

concept represented by the class
– Beware "verb + er" names, e.g. Manager, Scheduler,

ShapeDisplayer
• Interface names often –able/-ible adjectives:

Iterable, Comparable, …
• Method names: noun or verb phrases

– Nouns for observers: size, totalSales
– Verbs+noun for observers: getX, isX, hasX
– Verbs for mutators: move, append
– Verbs+noun for mutators: setX
– Choose affirmative, positive names over negative ones

isSafe not isUnsafe
isEmpty not hasNoElements

UW CSE 331 Winter 2022 15

Bad names

count, flag, status, compute, check, value, pointer,
names starting with my…

– Convey no useful information

Describe what is being counted, what the “flag” indicates, etc.
numberOfStudents, courseFull, noMorePizza,
calculatePayroll, validateWebForm, …

But short names in local contexts are good:
Good: for(i = 0; i < size; i++) items[i]=0;

Not: for(theLoopCounter = 0;
theLoopCounter < theCollectionSize;
theLoopCounter++)

theCollectionItems[theLoopCounter]=0;
UW CSE 331 Winter 2022 16

Documenting a class
• Keep internal and external documentation separate
• External documentation: Specification

– /** ... */ Javadoc for classes, interfaces, methods
– What clients need to know
– Includes abstract values & invariants, pre/postconditons, etc.

• Internal documentation: Implementation
– // comments inside method bodies & classes
– Clients don’t need this information and shouldn’t know (see) it
– What someone reading the code needs to know to understand it
– Includes rep. invariant, abstraction function, internal pre/post

conditions, algorithm explanations, rationale for design and
implementation choices, why it was done this way

– If it’s hard to document/explain, redesign it

UW CSE 331 Winter 2022 17

Field design

A variable should be made into a field if and only if:
– It is part of the inherent internal state of the object
– It has a value that retains meaning throughout the object's life
– Its state must persist between public method invocations

All other variables should be local to a method
– Fields should not be used to avoid parameter passing
– Not every constructor parameter needs to be a field

Exception: Certain cases where overriding is needed
– Example: Thread.run

UW CSE 331 Winter 2022 18

Constructor design

Constructors should have all the arguments necessary to initialize the
object's state – no more, no less

Object should be completely initialized after constructor is done
– The rep invariant should hold

Client shouldn't need to call other methods to “finish” initialization
– sometimes tempting but an easy way to cause bugs
– complex initialization can be done using a “builder” pattern

• (more on this in later in the course)

UW CSE 331 Winter 2022 19

Method design

Effective Java (3rd ed.) Tip # 51: Design method signatures carefully
• Avoid long parameter lists

– Perlis: “If you have a procedure with ten parameters, you probably
missed some.”

• Especially error-prone if parameters are all the same type
– Which of these has a bug?

memset(ptr, size, 0);
memset(ptr, 0, size);

• Avoid methods that have lots of (or any?) Boolean “flag” parameters

EJ Tip #52: Use overloading judiciously
• Avoids having arbitrary different method names
• But use only when specifications are analogous

UW CSE 331 Winter 2022 20

Method Bodies

• Write method bodies to make them easy to read
– make life easier for your code reviewer
– (make life easier for yourself when you come back later)

• Break code into nicely sized “paragraphs”
– i.e., consecutive lines of code with no blank lines

• Put a comment at the top of the paragraph
– (unless the code is just as readable as the comment)
– use full sentences and correct English

• Think about whether “paragraphs” should be broken out into
separate methods (not always, but sometimes, especially if
code is duplicated or reusable elsewhere)

CSE 331 Fall 2020 21

Open-Closed Principle

Software entities should be open for extension, but closed for
modification

– Add features by adding new classes or reusing existing ones
in new ways

– Avoid modifying existing ones
• Changing existing code can introduce bugs and errors

Related: Code to interfaces, not to classes
Example: accept a List parameter, not ArrayList or
LinkedList

EJ Tip #64: Refer to objects by their interfaces
Really: use the most general/highest type that provides the
needed operations

UW CSE 331 Winter 2022 22

Enums improve readability

Consider use of enums, even with only two values

Which of the following is better?

oven.setTemp(97, true);

oven.setTemp(97, Temperature.CELSIUS);

(see EJ #51)

UW CSE 331 Winter 2022 23

Choosing types – some hints

Numbers: Favor int and long for most numeric computations

EJ Tip #60: Avoid float and double if exact answers are
required

Classic example: money (round-off is bad here)

Avoid using String representations
If implementation is parsing String representations, redesign

(watch for String.indexOf, regular expressions)
String is tempting because it’s a common input/output format,
but avoid unless the data actually is text

(don’t store numbers as strings)
EJ Tip #12: provide observer methods so client doesn’t have to
rely on exact format of toString() output

UW CSE 331 Winter 2022 24

Independence of views

Confine user interaction to a core set of “view” classes
– Isolate these from the “model” classes that maintain the key

system data

Do not put print statements in your core (model) classes
– This locks your code into a text representation
– Makes it less useful if the client wants a GUI, a web app, etc.

Instead, have model classes return data for use by view classes
– Which of the following is better?

public void printMyself()

public String toString()

UW CSE 331 Winter 2022 25

The model is small

• Do keep the core model of what you are doing small and
independent

• Don’t get sloppy on the “extra layers” around it
– It ends up being most of your code!

UW CSE 331 Winter 2022 26

Less than 10% of the code has to do with
the ostensible purpose of the system; the
rest deals with input-output, data
validation, data structure maintenance,
and other housekeeping.
-- Mary Shaw

Last thoughts (for now)

• Specs and code are read more often than written – writing
matters!

• Who are your readers?
– Clients of your code – need to know how to use it
– Programmers maintaining the code – need to know

how it works, but, even more, why it was done this way
• (including you in 3 weeks/months/years)

• Write comments and documentation when you create
things – don’t try to reconstruct “why” later

• Read/reread style and design advice regularly
• Keep practicing – mastery takes time and experience
• You’ll always be learning. Get feedback! Keep looking for

better ways to do things!

UW CSE 331 Winter 2022 27

