
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2022

Specifications

UW CSE 331 Winter 2022 1

Administrivia 1

• Next two assignments:
– HW2: Written problems on loops, due Tue. night 11 pm
– HW3: Java warmup & project logistics (out later today)

• Due next Thur. night, 11 pm
• You should get gitlab email later today when repo

created. Feel free to ignore until section tomorrow.
• Shouldn’t take much time, but start early so we can

chase down any configuration problems
– & read and follow instructions carefully!

• Warning: Stackoverflow and Google are probably
not your friends for configuration problems. Our
setup is intended to work, not to require random web
searches and tinkering. If something isn’t working
right, check handouts, post on the discussion board,
and/or use office hours.

UW CSE 331 Winter 2022 2

Administrivia 2

• Sections tomorrow on hw3 & project logistics
– If you’re using your computer (recommended):

• Install OpenJDK Java 11 JDK (not JRE), IntelliJ
Ultimate, and git before section

– See hw3-setup-guide handout on Resources page
for details

– (Java 12+ also ok, but we use Java 11 for testing)
– Students can get a free IntelliJ Ultimate license

• Windows users: Best practice: remove all
existing Java JDKs and JREs before installing
current one

• Everyone: be sure you have a clean IntelliJ with
no strange plugins, customized options, etc.

UW CSE 331 Winter 2022 3

New Administrivia (added Friday)

• We’re continuing online for next couple of weeks
– Zoom lectures, sections, office hours
– Links will appear on calendars next few days –

zoom links on canvas/zoom calendars as usual

• UW closed Monday (MLK day) – no class
– But we will have some office hours thanks to our

great TAs!
• Links on canvas/zoom calendar

UW CSE 331 Winter 2022 4

New Administrivia (added Friday)

• HW2 due Tuesday night 11PM (not 11:30, not 11:59)

• HW3 due Thursday night, 11 PM
– But please be sure you’ve got things set up and

have been able to clone you gitlab repo way
before then so we have time to fix problems.
Email cse331-staff[at]cs if individual setup bugs

• We will post videos from a couple of yesterday’s
sections (one windows, one mac)

UW CSE 331 Winter 2022 5

2 Goals of Software System Building

• Building the right system
– Does the program meet the user’s needs?
– Determining this is usually called validation

• Building the system right
– Does the program meet the specification?
– Determining this is usually called verification

• CSE 331: the second goal is the focus – creating a correctly
functioning artifact
– Surprisingly hard to specify, design, implement, test, and

debug even simple programs

6UW CSE 331 Winter 2022

Where we are

• We’ve started to see how to reason about code
• We’ll build on those skills in many places:

– Specification: What are we supposed to build?

– Design: How do we decompose the job into manageable
pieces? Which designs are “better”?

– Implementation: Building code that meets the specification

– Testing: Systematically finding problems

– Debugging: Systematically fixing problems

– Maintenance: How does the artifact adapt over time?

– Documentation: What do we need to know to do these
things? How/where do we write that down?

7UW CSE 331 Winter 2022

The challenge of scaling software

• Small programs are simple and malleable
– Easy to write
– Easy to change

• Big programs are (often) complex and inflexible
– Hard to write
– Hard to change

• Why does this happen?
– Because interactions become unmanageable

• How do we keep things simple and malleable?
– Divide and conquer!

8UW CSE 331 Winter 2022

A discipline of modularity

• Two ways to view a program:
– The client's view (how to use it)
– The implementer's view (how to build it)

• Apply implementer and client views to system parts:
– While implementing one part, consider yourself a client of

any other parts it depends on
– Ignore the implementation of those other parts
– Minimizes interactions between parts

• Formalized through the idea of a specification

9UW CSE 331 Winter 2022

A specification is a contract

• A set of requirements agreed to by the user and the
manufacturer of the product
– Describes their expectations of each other

• Facilitates simplicity via two-way isolation
– Isolate client from implementation details
– Isolate implementer from how the part is used
– Discourages implicit, unwritten expectations

• Facilitates change
– reduces the “Medusa effect”: the specification,

rather than the code, gets “turned to stone” by
client dependencies

UW CSE 331 Winter 2022 10

Importance of Specifications

Specifications are essential to correctness

They are also essential to changeability
• need to know what changes will break code using it

They are also essential to understandability
• need to tell readers what it is supposed to do

They are also essential to modularity…

UW CSE 331 Winter 2022 11

Method Specifications

To prove correctness of a method, we need
• precondition
• postcondition

Without these, we can’t say whether the code is correct
These tell us what it means to be correct

They are the specification for the method

UW CSE 331 Winter 2022 12

Correctness =
Validity of

{ P } S { Q }

Isn’t the interface sufficient?
An interface defines the boundary between implementers and users:

public class BadList<E> implements List<E> {
public E get(int x) { return null; }
public void set(int x, E y){}
public void add(E x) {}
public void add(int x, E y){}
…
public static <T> boolean isSub(List<T>, List<T>){

return false;
}

}

Interface provides the syntax and types
But nothing about the behavior and effects
– Provides too little information to clients

Note: Code above is right concept but might not be (completely) legal Java
– slides will often gloss over details to get main ideas to fit

13UW CSE 331 Winter 2022

Why not just read code?
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

Why are you better off with a specification?
14UW CSE 331 Winter 2022

Code is complicated

• Code gives more detail than needed by client

• Understanding or even reading every line of code is an
excessive burden
– Suppose you had to read source code of Java libraries to

use them
– Same applies to developers of different parts of the libraries

• Client cares only about what the code does, not how it does it

15UW CSE 331 Winter 2022

Code is ambiguous

• Code seems unambiguous and concrete
– But which details of code's behavior are essential, and which

are incidental?

• Code invariably gets rewritten
– Clients need to know what they can rely on

• What properties will be maintained over time?
• What properties might be changed by future optimization,

improved algorithms, or bug fixes?
– Implementer needs to know what features the client depends

on, and which can be changed

16UW CSE 331 Winter 2022

Comments are essential

Typical comments often convey only an informal, general idea of what
that the code does:

// This method checks if "part" appears as a
// sub-sequence in "src"
static <T> boolean sub(List<T> src, List<T> part){

...
}

Problem: ambiguity remains
– What if src and part are both empty lists?
– When does the function return true?

17UW CSE 331 Winter 2022

From vague comments to specifications

• Roles of a specification:
– Client agrees to rely only on information in the description in

their use of the part
– Implementer of the part promises to support everything in

the description
• Otherwise is perfectly at liberty

• Sadly, much code lacks a specification
– Clients often work out what a method/class does in

ambiguous cases by running it and depending on the results
– Leads to bugs and programs with unclear dependencies,

reducing simplicity and flexibility

18UW CSE 331 Winter 2022

Recall the sublist example
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

19UW CSE 331 Winter 2022

A more careful description of sub

// Check whether “part” appears as a sub-sequence in “src”

needs to be given some caveats (why?):
// * src and part cannot be null
// * If src is empty list, always returns false
// * Results may be unexpected if partial matches
// can happen right before a real match; e.g.,
// list (1,2,1,3) will not be identified as a
// sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:
// This method scans the “src” list from beginning
// to end, building up a match for “part”, and
// resetting that match every time that...

UW CSE 331 Winter 2022 20

It’s better to simplify than
to describe complexity!

A complicated description suggests poor design
– Rewrite sub to be more sensible, and easier to describe

// returns true iff possibly empty sequences A, B exist such that
// src = A + part + B
// where “+” is sequence concatenation
static <T> boolean sub(List<T> src, List<T> part) {

• Mathematical flavor not always necessary, but often helps avoid
ambiguity

• “Declarative” style is important
– Avoid reciting or depending on implementation details

21UW CSE 331 Winter 2022

Sneaky fringe benefit of specs #1

• The discipline of writing specifications changes the incentive
structure of coding
– Rewards code that is easy to describe and understand
– Punishes code that is hard to describe and understand

• Even if it is shorter or easier to write

• If you find yourself writing complicated specifications, it is an
incentive to redesign
– In sub, code that does exactly the right thing may be slightly

slower than a hack that assumes no partial matches before
true matches, but cost of forcing client to understand the
details is too high

22UW CSE 331 Winter 2022

Writing specifications with Javadoc

• Javadoc
– Sometimes can be daunting; get used to using it

• Javadoc convention for writing specifications
– Method signature (prototype – name, parameters, result type)
– Text description of method
– @param: description of what gets passed in
– @return: description of what gets returned
– @throws: exceptions that may occur

23UW CSE 331 Winter 2022

Example: Javadoc for String.contains

public boolean contains(CharSequence s)

Returns true if and only if this string contains the specified
sequence of char values.

Parameters:
s - the sequence to search for

Returns:

true if this string contains s, false otherwise

Throws:

NullPointerException – if s is null

Since:

1.5

24UW CSE 331 Winter 2022

CSE 331 specifications

• The precondition: constraints that hold before the method is called
(if not, all bets are off – no guarantees about what method will do)
– @requires: spells out any obligations on client

• The postcondition: constraints that hold after the method is called
(if the precondition held)
– @modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be unchanged
– @effects: gives guarantees on final state of modified objects
– @throws: lists possible exceptions and conditions under

which they are thrown (Javadoc uses this too)
– @returns: describes return value (Javadoc uses this too)

25UW CSE 331 Winter 2022

Note: slides are abbreviated.
In your code, it must be
@spec.requires,
@spec.modifies, etc. but
@throws, @returns for
standard JavaDoc tags

Example 1

static <T> int change(List<T> lst, T oldelt, T newelt)
requires lst, oldelt, and newelt are non-null.

oldelt occurs in lst.
modifies lst
effects change the first occurrence of oldelt in lst to newelt

& makes no other changes to lst
returns the position of the element in lst that was oldelt and

is now newelt

static <T> int change(List<T> lst,
T oldelt, T newelt) {

int i = 0;
for (T curr : lst) {

if (curr == oldelt) {
lst.set(newelt, i);
return i;

}
i = i + 1;

}
return -1;

} 26UW CSE 331 Winter 2022

Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies none
effects none
returns a list of same size where the ith element is

the sum of the ith elements of lst1 and lst2

static List<Integer> zipSum(List<Integer> lst1
List<Integer> lst2) {

List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lst1.size(); i++) {

res.add(lst1.get(i) + lst2.get(i));
}
return res;

}
27UW CSE 331 Winter 2022

Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies lst1
effects ith element of lst2 is added to the ith element of lst1
returns none

static void listAdd(List<Integer> lst1,
List<Integer> lst2) {

for(int i = 0; i < lst1.size(); i++) {

lst1.set(i, lst1.get(i) + lst2.get(i));
}

}

28UW CSE 331 Winter 2022

A method should do only one thing

• Either return a value, or have some side effect
(modification of program state)
– Poor style to have both @effects and @returns
– Exception: methods like HashMap.put that

return an old value as part of an update

UW CSE 331 Winter 2022 29

Should requires clause be checked?
• If the client calls a method without meeting the precondition, the

code is free to do anything
– Including pass corrupted data back
– It is polite, nevertheless, to fail fast: to provide an immediate

error, rather than permitting mysterious/silent bad behavior

• Preconditions are common in “helper” methods/classes
– In public libraries, it’s friendlier to deal with all possible input
– But: binary search would normally impose a pre-condition

rather than simply failing if list is not sorted. Why?

• Rule of thumb: Check if cheap to do so
– Example: list has to be non-null à check
– Example: list has to be sorted à skip
– A quality implementation will check preconditions whenever it is

inexpensive and convenient to do so
• Defensive programming

30UW CSE 331 Winter 2022

@throws vs @requires
• Require a precondition or throw an exception if it’s

cheap enough to check? Which is better?
– @requires size > 0
– @throws IllegalArgumentException if size <= 0

• Tradeoffs
– @throws describes exactly what will happen – it is

part of the spec.
– @requires says “if this precondition isn’t met, who

knows what might happen?”
• Must choose one or the other – can’t include both.

– Can’t specify “who knows what might happen” and
“this is guaranteed to happen” for the same input!

UW CSE 331 Winter 2022 31

Sneaky fringe benefit of specs #2

• Specification means that client doesn't need to look at
implementation
– So the code might not even exist yet!

• Write specifications first, make sure system will fit together, and
then assign separate implementers to different modules
– Allows teamwork and parallel development
– Also helps with testing (future topic)

32UW CSE 331 Winter 2022

Upgrading a library

• Your program uses a library
• Can you use a different library?
• Can you use a new version?
We want an objective test

You can upgrade if the specification of the new version is
stronger

– It makes at least as many promises and doesn’t
require more from your program

– Example:
• Weaker spec: returns the elements
• Stronger spec: returns the elements in sorted order

UW CSE 331 Winter 2022 33

Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if
– for every input allowed by the spec precondition,

M produces an output allowed by the spec postcondition

If M does not satisfy S, either M or S (or both!) could be “wrong”
– “one person’s feature is another person’s bug.”
– usually better to change the implementation than the spec

34UW CSE 331 Winter 2022

Stronger vs Weaker Specifications

• Definition 1: specification S2 is stronger than S1 iff
– for any implementation M: M satisfies S2 => M satisfies S1
– i.e., S2 is harder to satisfy

• Two specifications may be incomparable
– but we are usually choosing between stronger vs weaker

35UW CSE 331 Winter 2022

S2 S1 (satisfying implementations)

Stronger vs Weaker Specifications

• An implementation satisfying a stronger specification can be
used anywhere that a weaker specification is required
- can use a method satisfying S2 anywhere S1 is expected

Making changes to a specification...
• changing from S1 to S2 should not break clients

– but it could break implementation
• changing from S2 to S1 should not break implementation

– but it could break clients!

UW CSE 331 Winter 2022 36

S2 S1

Stronger vs Weaker Specifications

• Definition 2: specification S2 is stronger than S1 iff
– precondition of S2 is weaker than that of S1, and/or
– postcondition of S2 is stronger than that of S1

(on all inputs allowed by both)

• A stronger specification:
– is harder to satisfy
– gives more guarantees to the caller

• A weaker specification:
– is easier to satisfy
– gives more freedom to the implementer

37UW CSE 331 Winter 2022

Two specifications for find
which is stronger? #1

int find(int[] a, int value) {
for (int i=0; i<a.length; i++) {

if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

38UW CSE 331 Winter 2022

Two specifications for find
Which is stronger? #2

int find(int[] a, int value) {
for (int i=0; i<a.length; i++) {

if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

39UW CSE 331 Winter 2022

Two specifications for find
Which is stronger? #3

int find(int[] a, int value) {
for (int i=0; i<a.length; i++) {

if (a[i]==value)
return i;

}
return -1;

}

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

40UW CSE 331 Winter 2022

Why compare specifications?

We wish to relate procedures to specifications
– Does the procedure satisfy the specification?
– Has the implementer succeeded?

We wish to compare specifications to one another
– Which specification (if either) is stronger?
– A procedure satisfying a stronger specification can be used

anywhere that a weaker specification is required
• Substitutability principle

Given two specifications, they may be incomparable
– Neither is weaker/stronger than the other
– Some implementations might still satisfy them both

UW CSE 331 Winter 2022 41

Substitutability

• Suppose that
– I1 and I2 satisfy specification S
– P uses I1 as a component (and relies only on S)

• Then P can use I2

• Further, suppose that
– I3 satisfies S3 which is stronger than S

• Then P can use I3

• Fact: If specification S3 is stronger than S1, then for
any implementation I, I satisfies S3 => I satisfies S1

UW CSE 331 Winter 2022 42

“Strange” case: @throws

[Prior versions of course, including old exams, were clumsy/wrong
about this]

Compare:
S1:

@throws FooException if x<0
@return x+3

S2:
@return x+3

• These are incomparable because they promise different,
incomparable things when x<0

• Both are stronger than @requires x>=0; @return x+3

UW CSE 331 Winter 2022 43

Strengthening a specification

• Strengthen a specification by:
– Promising more (stronger postcondition):

• returns clause harder to satisfy
• effects clause harder to satisfy
• fewer objects in modifies clause
• more specific exceptions (subclasses)

– Asking less of client (weaker precondition)
• requires clause easier to satisfy

• Weaken a specification by:
– (Opposite of everything above)

44UW CSE 331 Winter 2022

Which is better?

• Stronger does not always mean better!

• Weaker does not always mean better!

• Strength of specification trades off:
– Usefulness to client
– Ease of simple, efficient, correct implementation
– Promotion of reuse and modularity
– Clarity of specification itself

• “It depends”

UW CSE 331 Winter 2022 45

Review:
Ways to compare specifications

• A stronger specification is satisfied by fewer
implementations

• A stronger specification has
– weaker preconditions (note contravariance)
– stronger postcondition
– fewer modifications
Can be checked by hand

• A stronger specification has a (logically) stronger
formula – can be checked by tools

UW CSE 331 Winter 2022 48

Specification style

• The point of a specification is to be helpful
– Formalism helps, excessive formalism doesn’t

• A specification should be
– coherent: not too many cases
– informative: (bad example in Java library,
HashMap.get; what does result of null mean?)

– strong enough: to do something useful, to provide
guarantees

– weak enough: to permit (efficient) implementation

UW CSE 331 Winter 2022 49

Warnings on Specifications

Specifications are also the products of human design, so...

• They will contain bugs
– (recall the central dogma of this course)
– harder to fix the more people that have seen it

• “turns to stone” a bit more with each viewer

• Creating them requires judgement
– no “turn the crank” way to produce good specs (or invariants)
– harder but that’s why it’s interesting work

50UW CSE 331 Winter 2022

