Administrivia (1)

- Gradescope and Ed discussion accounts created now. If you’re registered but not set up yet, send first & last name, id # (7 digits), and @uw.edu email address to cse331-staff[at]cs

- Office hours: schedule for this week posted; rest coming soon
 - Goal: help you get “unstuck” when you are stuck and not making progress after a reasonable time
 - i.e., come up with ideas for how you can make progress, not necessarily fix/solve everything right then
 - Goal: clear up questions or confusions
 - Analogy: going down the hall to see if a colleague has any ideas
 - Help us help you: organize what you want to talk about, be sure you can explain what you’ve already done and where the problems seem to be, ...
 - See info sheet on web resources page
Administrivia (2)

- HW1 out now, due Tuesday night, 11 pm
 - Reasoning about code; programming logic without loops
 - Today’s lecture and tomorrow’s sections
 * Look on canvas calendar for section zoom links

- Reminder: readings to the calendar – sections (items) in *Pragmatic Programmer* (PP) and *Effective Java* (EJ)
 - Free access to books online via UW library’s institutional license – see the syllabus or other course resources for access details
 * But alas, Core Java seems to have disappeared at the request of the publisher. We’ll see if there’s anything we can do about that…
Overview

• Next few lectures: two presentations linked to course calendar on the web:
 – Lecture notes – primary source
 • Must read/study
 – Powerpoint slides – summary & supplement
They are complementary and you should understand both of them
Reasoning about code

Determine what facts are true as a program executes

– Under what assumptions

Examples:

– If \(x \) starts positive, then \(y \) is 0 when the loop finishes
– Contents of the array that \(arr \) refers to are sorted
– Except at one code point, \(x + y = z \)
– For all instances of \(\text{Node} \ n \),
 \[n.\text{next} == \text{null} \lor n.\text{next.prev} == n \]
– ...

• Notation: In logic we often use \(\land \) for “and” and \(\lor \) for “or”. Concise and convenient, but we’re not dogmatic about it
Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 • Prove a program correct (or find bugs trying), or (even better) develop program and proof together to get a program that is correct by construction
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – “Callers must not pass null as an argument”
 – “Method will always return an unaliased object”
 – …
Our approach

• Hoare Logic: a classic approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods for now

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why? (1)

• Programmers rarely “use Hoare logic” in this much detail
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But can be very useful to develop and reason about loops and data with subtle invariants
 • Examples: Homework 0, Homework 2

• Most professionals can do reasoning like this in their head
 – Eventually it will be the same for you

• Overkill for simple problems, essential for really hard ones
Why? (2)

• Formal reasoning is an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces and data invariants, which does happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) \(w > 0 \)

  ```
  // w > 0
  x = 17;
  // w > 0 ∧ x == 17
  y = 42;
  // w > 0 ∧ x == 17 ∧ y == 42
  z = w + x + y;
  // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
  ...
  ```

- Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:

- Suppose we want z to be negative at the end

  ```
  // w + 17 + 42 < 0
  
  x = 17;
  // w + x + 42 < 0
  
  y = 42;
  // w + x + y < 0
  
  z = w + x + y;
  // z < 0
  ```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

- **Forward reasoning:**
 - Determine what follows from initial assumptions
 - Most useful for *maintaining an invariant*

- **Backward reasoning**
 - Determine sufficient conditions for a certain result
 - If result desired, the assumptions suffice for correctness
 - If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

• Forward reasoning:
 – Simulates the code (for many “inputs” “at once”)
 – Often more intuitive
 – But introduces [many] facts irrelevant to a goal

• Backward reasoning
 – Often more useful: Understand what each part of the code contributes toward the goal
 – “Thinking backwards” takes practice but gives you a powerful new way to reason about programs and to write correct code
Conditionals

// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
} // either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression

2. The overall postcondition is the disjunction ("or") of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

// $x \geq 0$
$z = 0$;

// $x \geq 0 \land z = 0$
if ($x \neq 0$) {
 // $x \geq 0 \land z = 0 \land x \neq 0$ (so $x > 0$)
 $z = x$;
 // ... $\land z > 0$
} else {
 // $x \geq 0 \land z = 0 \land !(x! = 0)$ (so $x = 0$)
 $z = x + 1$;
 // ... $\land z = 1$
}

// ($... \land z > 0$) \lor ($... \land z = 1$) (so $z > 0$)
Our approach

• Hoare Logic, a classic approach to logical reasoning about code
 – Named after its inventor, Tony Hoare
 – We will only consider variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

• The “assumption” before some code is the **precondition**
• The “what holds after (given assumption)” is the **postcondition**

• Instead of writing pre/postconditions after //, write them in {...}
 – This is not Java
 – How Hoare logic has been written “on paper” for 40ish years

    ```
    \{ w < -59 \}
    x = 17;
    \{ w + x < -42 \}
    ```
 – In pre/postconditions, = is equality, not assignment
 • Math’s “=”, which for numbers is Java’s ==

      ```
      \{ w > 0 \land x = 17 \}
      y = 42;
      \{ w > 0 \land x = 17 \land y = 42 \}
      ```
What an assertion means

- An **assertion** (including pre/postconditions) is a logical formula that can refer to program state (e.g., contents of variables)

- A **program state** is something that “given” a variable can “tell you” its contents
 - Or any expression that has no *side-effects*
 - (informally, this is just the current values of all variables)

- An assertion **holds** for a program state, if evaluating using the program state produces *true*
 - Evaluating a program variable produces its contents in the state
 - Can think of an assertion as representing the set of (exactly the) states for which it holds
Aside: assert statement in Java

• An Java assert is a statement with a Java expression, e.g.,
 \[
 \text{assert } x > 0 \land y < x; \\
 \]
• Similar to our assertions
 – Evaluate using a program state to get true or false
 – Uses Java syntax

• In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic – but really useful to detect bugs early

• This week: we are reasoning about the code, not running it on some input
A Hoare Triple

• A Hoare triple is two assertions and one piece of code:
 \[\{ P \} \; S \; \{ Q \} \]
 – \(P \) the precondition
 – \(S \) the code (statement)
 – \(Q \) the postcondition

• A Hoare triple \(\{ P \} \; S \; \{ Q \} \) is (by definition) valid if:
 – For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 – Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 – Else the Hoare triple is invalid
Examples

Valid or invalid?
 – (Assume all variables are integers without overflow)

• \{x \neq 0\} y = x*x; \{y > 0\} \quad \text{valid}
• \{z \neq 1\} y = z*z; \{y \neq z\} \quad \text{invalid}
• \{x \geq 0\} y = 2*x; \{y > x\} \quad \text{invalid}
• \{true\} (if(x > 7) \{y=4;\} \text{ else } \{y=3;\}) \{y < 5\} \quad \text{valid}
• \{true\} (x = y; \ z = x;) \{y=z\} \quad \text{valid}
• \{x=7 \land y=5\}
 (tmp=x; x=tmp; y=x;) \quad \text{invalid}
 \{y=7 \land x=5\}
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture(s):] A rule for loops
 – ...
Basic rule: Assignment

\{P\} \ x = e; \ {Q\}

- Let \(Q'\) be the same as \(Q\) except replace every \(x\) with \(e\)
- Triple is valid if: For all program states, if \(P\) holds, then \(Q'\) holds
 (i.e., if \(P\) guarantees that \(Q'\) is true, then execution of \(x=e;\) will guarantee that \(Q\) is true)

- Example: \{z > 34\} \ y=z+1; \ {y > 1\}
 - \(Q'\) is \{z+1 > 1\}
 - Triple is valid because if \{z > 34\} is true then \{z+1 > 1\} is guaranteed to be true
Combining rule: Sequence

\{P\} \; S1;S2 \; \{Q\}

• Triple is valid if and only if there is an assertion \(R\) such that
 – \{P\}S1\{R\} is valid, and
 – \{R\}S2\{Q\} is valid

• Example: \{z \geq 1\} \; y=z+1; \; w=y*y; \; \{w > y\} \; (\text{integers})
 – Let \(R\) be \{y > 1\} \; (\text{this particular } R \text{ picked because “it works”})
 – Show \{z \geq 1\} \; y=z+1; \; \{y > 1\}
 • Use rule for assignments: \(z \geq 1\) implies \(z+1 > 1\)
 – Show \{y > 1\} \; w=y*y; \; \{w > y\}
 • Use rule for assignments: \(y > 1\) implies \(y*y > y\)
Combining rule: Conditional

\[\{P\} \text{ if}(b) \ S1 \text{ else } S2 \ {Q} \]

- Triple is valid if and only if there are assertions \(Q_1, Q_2\) such that
 - \(\{P \land b\} \ S1 \ {Q_1}\) is valid, and
 - \(\{P \land \neg b\} \ S2 \ {Q_2}\) is valid, and
 - \(Q_1 \lor Q_2\) implies \(Q\) (i.e., if either of \(Q_1\) or \(Q_2\) is valid then \(Q\) is also)

- Example: \(\{true\} \ (if(x > 7) y=x; \text{ else } y=20;) \ {y > 5}\)
 - Let \(Q_1\) be \(\{y > 7\}\) (other choices work too)
 - Let \(Q_2\) be \(\{y = 20\}\) (other choices work too)
 - Use assignment rule to show \(\{true \land x > 7\} y=x; \{y>7\}\)
 - Use assignment rule to show \(\{true \land x \leq 7\} y=20; \{y=20\}\)
 - Indicate \(y>7 \lor y=20\) implies \(y>5\)
Our approach

• Hoare Logic, a classic approach to logical reasoning about code
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
If P1 implies P2 (written $P1 \implies P2$), then:

- P1 is **stronger** than P2
- P2 is **weaker** than P1

This means:
- Whenever P1 holds, P2 also holds
- So it is more (or at least as) “difficult” to satisfy P1
 - The program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

• \(x = 17 \) is stronger than \(x > 0 \)

• \(x \) is prime is neither stronger nor weaker than \(x \) is odd

• \(x \) is prime and \(x > 2 \) is stronger than
 \(x \) is odd and \(x > 2 \)

• ...

UW CSE 331 Winter 2022
Why this matters to us

• Suppose we have:
 – \(\{P\}S\{Q\} \) is valid, and
 – \(P \) is weaker than some \(P_1 \), and
 – \(Q \) is stronger than some \(Q_1 \)

• Then: \(\{P_1\}S\{Q\} \) and \(\{P\}S\{Q_1\} \) and \(\{P_1\}S\{Q_1\} \)

• What???
 – \(\{P\} \) weaker than \(\{P_1\} \) means whenever \(\{P_1\} \) is true than \(\{P\} \) is also true, so if \(\{P\}S\{Q\} \) is valid then so is \(\{P_1\}S\{Q\} \)
 – \(\{Q\} \) stronger than \(\{Q_1\} \) means whenever \(\{Q\} \) is true then \(\{Q_1\} \) is also true, so if \(\{P\}S\{Q\} \) is valid then so is \(\{P\}S\{Q_1\} \)
 – Combine to show if \(\{P\}S\{Q\} \) is valid then so is \(\{P_1\}S\{Q_1\} \)
Example

Suppose we have
- P is \(x \geq 0 \)
- S is \(y = x+1 \)
- Q is \(y > 0 \)

Then: \{P\}S\{Q\} is valid: \{x \geq 0\} y = x+1 \{ y > 0 \}

Let \(P_1 \) be \(x > 0 \). \(P_1 \) is stronger than P (i.e., \(P_1 \Rightarrow P \))
Then: \{P_1\}S\{Q\} is valid: \{x > 0\} y = x+1 \{y > 0\}

Let \(Q_1 \) be \(y \geq 0 \). \(Q_1 \) is weaker than Q (i.e., \(Q \Rightarrow Q_1 \))
Then: \{P\}S\{Q_1\} is valid: \{x \geq 0\} y = x+1 \{y \geq 0\}

And: \{P_1\}S\{Q_1\} is also valid: \{x > 0\} y = x+1 \{y \geq 0\}
For backward reasoning, if we want $\{P\}S\{Q\}$, we could instead:

- Show $\{P_1\}S\{Q\}$, and
- Show $P \implies P_1$

Better, we could just show $\{P_2\}S\{Q\}$ where P_2 is the weakest precondition of Q for S

- Weakest means the most lenient assumptions such that Q will hold after executing S
- Any precondition P such that $\{P\}S\{Q\}$ is valid will be stronger than P_2, i.e., $P \implies P_2$

Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$

- Like our general rules with backward reasoning
Weakest preconditions

- \(\text{wp}(x = e; , Q) \) is \(Q \) with each \(x \) replaced by \(e \)
 - Example: \(\text{wp}(x = y*y; , x > 4) = y*y > 4 \), i.e., \(|y| > 2 \)

- \(\text{wp}(S1;S2, Q) \) is \(\text{wp}(S1, \text{wp}(S2, Q)) \)
 - i.e., let \(R \) be \(\text{wp}(S2, Q) \) and overall \(\text{wp} \) is \(\text{wp}(S1, R) \)
 - Example: \(\text{wp}((y=x+1; z=y+1;) , z > 2) = (x + 1) + 1 > 2 \), i.e., \(x > 0 \)

- \(\text{wp}(\text{if } b \text{ S1 else S2, Q}) \) is this logic formula:
 \[(b \land \text{wp}(S1,Q)) \lor (!b \land \text{wp}(S2,Q)) \]
 - (In any state, \(b \) will evaluate to either true or false…)
 - (You can sometimes then simplify the result)
Simple examples

• If S is $x = y^2$ and Q is $x > 4$, then $wp(S, Q)$ is $y^2 > 4$, i.e., $|y| > 2$

• If S is $y = x + 1; z = y - 3;$ and Q is $z = 10,$ then $wp(S, Q)$...

 $= wp(y = x + 1; z = y - 3; , z = 10)$
 $= wp(y = x + 1; , wp(z = y - 3; , z = 10))$
 $= wp(y = x + 1; , y-3 = 10)$
 $= wp(y = x + 1; , y = 13)$
 $= x+1 = 13$
 $= x = 12$
Bigger example

\[S \text{ is if } (x < 5) \{ \]
\[\quad x = x \times x; \]
\[\} \text{ else } \{ \]
\[\quad x = x + 1; \]
\[\} \]
\[Q \text{ is } x \geq 9 \]

\[\text{wp}(S, x \geq 9) \]
\[= (x < 5 \land \text{wp}(x = x \times x; , x \geq 9)) \]
\[\lor (x \geq 5 \land \text{wp}(x = x + 1; , x \geq 9)) \]
\[= (x < 5 \land x \times x \geq 9) \]
\[\lor (x \geq 5 \land x + 1 \geq 9) \]
\[= (x \leq -3) \lor (x \geq 3 \land x < 5) \]
\[\lor (x \geq 8) \]
If-statements review

Forward reasoning

\{P\}

if B

\{P \land B\}
S1
\{Q1\}

else

\{P \land \neg B\}
S2
\{Q2\}
\{Q1 \lor Q2\}

Backward reasoning

\{ (B \land \text{wp}(S1, Q)) \lor
 \neg B \land \text{wp}(S2, Q) \} \}

if B

\{\text{wp}(S1, Q)\}
S1
\{Q\}

else

\{\text{wp}(S2, Q)\}
S2
\{Q\}
\{Q\}
“Correct”

- If \(wp(S, Q) \) is true, then executing \(S \) will always produce a state where \(Q \) holds
 - true holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

 \[
 \begin{align*}
 \{ & \text{true} \} \\
 w &= x + y; \\
 \{ & w = x + y \} \\
 x &= 4; \\
 \{ & w = x + y \land x = 4 \} \\
 y &= 3; \\
 \{ & w = x + y \land x = 4 \land y = 3 \}
 \end{align*}
 \]

 But clearly we do not know \(w = 7 \)!
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”
 • But only do this if you actually use the “old contents” from that variable later in the proof – omit otherwise

• Corrected example:
 \{ \text{true} \}
 \begin{align*}
 &w = x + y; \\
 &\{ w = x + y \} \\
 &x = 4; \\
 &\{ w = x_1 + y \land x = 4 \} \\
 &y = 3; \\
 &\{ w = x_1 + y_1 \land x = 4 \land y = 3 \}
 \end{align*}
Useful example: swap

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

\[
\{x = x_{\text{pre}} \land y = y_{\text{pre}}\}
\]

\[
\text{tmp} = x;
\]

\[
\{x = x_{\text{pre}} \land y = y_{\text{pre}} \land \text{tmp} = x_{\text{pre}}\}
\]

\[
x = y;
\]

\[
\{x = y \land y = y_{\text{pre}} \land \text{tmp} = x_{\text{pre}}\}
\]

\[
y = \text{tmp};
\]

\[
\{x = y_{\text{pre}} \land y = \text{tmp} \land \text{tmp} = x_{\text{pre}}\}
\]

\[
\Rightarrow \{x = y_{\text{pre}} \land y = x_{\text{pre}}\}
\]