
 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 1 of 13

Remember: For questions involving proofs, assertions, invariants, and so forth, you
should assume that all numeric quantities are unbounded integers (i.e., overflow cannot
happen and there are no fractional parts to numbers) and integer division is truncating
division as in Java, i.e., 5/3 => 1.

Question 1. (12 points, 6 each) Forward reasoning with (maybe) bugs! Here are two
code sequences with assertions inserted using forward reasoning. But there may be
problems: the sequences may contain an error in the reasoning – or maybe not. In each
code sequence, do one of the following:

• If there are no errors in the assertions, write “correct” to the side of the problem.
• If there are one or more errors in the assertions, circle the first assertion that is

incorrect. An assertion is incorrect if either it is a logic error or if it is weaker
than the strongest assertion that could appear at that position in the code.

• You do not need to justify your answers, just circle the first buggy assertion.
(Note that there may be further errors later in the sequence because of previous
errors. You only should circle the first error in the sequence if there is one.)

You should assume that the actual code is correct – the question is about the logical
reasoning. Also, recall that ∧	is	the	symbol	for	logical	“and”.	

(a) {x = z}
 x = 2*x;
 {x = 2z}
 z = 2*z;
 {x = 4z} (should be { x=z })
 x = 2*x – 3;
 {x = 8z - 3}

(b) {x = 2y ∧ z > 0}
 x = x + 1
 {x = 2y + 1 ∧ z > 0}
 x = x - z;
 {x = 2y - z + 1 ∧ z > 0}
 z = z - 1;
 { x = 2y - z ∧ z > -1}
 y = y - z;
 {x = 2y ∧ z > -1} (should be { x = 2y+z ∧	z	>	-1	})	
	
Notes:	all	that	was	required	was	to	circle	the	correct	answer.		The	“should	be”	
comments	above	are	for	information	only.		Also,	we	tried	to	provide	partial	credit	
when	possible	if	an	earlier	or	later	assertion	was	selected	because	of	simple	algebra	
mistakes	or	similar	errors.

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 2 of 13

Question 2. (14 points) (Backward reasoning). We’re trying to debug some code using
backwards reasoning. The code fragment we’re working on has an assertion that
indicates that when execution reaches the beginning of this sequence, we know that the
assertion {y>5} holds. After execution, the postcondition {x+y>5} should hold. But
something could be wrong with the code. We want to use backwards reasoning to see if
there is a bug.

(a) (12 points) Find the weakest precondition for the sequence of statements below by
starting with the postcondition and reasoning backwards to the beginning. Your weakest
precondition should appear in the first blank space when you’re done. Write appropriate
assertions in each line and simplify your final answer if possible. (Note that { y>5 } is
the known assertion that appears at the beginning of the code we’ve found, but it might,
or might not, be the weakest precondition for the if statement – that is part of what we’re
investigating.)

 { y > 5 }

 { (y%2=0	∧	y%2+y	>	5)	∨	(y%2!=0	∧	2y	>	7)	}	=>	

 {(y > 5)	∨	(y%2=1	∧	2y>7)	}	=>	{(y>5)	∨	(y>=5)}	=>	{y>=5}

 if (y % 2 == 0) {

 { y%2 + y > 5 }

 x = y % 2;

 { x + y > 5 }

 } else {

 { y-2 + y > 5 } => { 2y > 7 }

 x = y - 2;

 { x + y > 5 }

 }

 { x + y > 5 }

(b) (2 points) Now that we’ve figured out the weakest precondition for the if statement
that is needed to guarantee the post-condition, is the known { y > 5 } assertion at the
beginning of the code sufficient to guarantee that the weakest pre-condition holds there?
(Or another way to ask the question is: is { y>5 } if-statement { x+y >5 } a valid Hoare
triple?) You only need to answer yes or no.

Yes. (The {y>5} assertion at the beginning is stronger than (implies) the weakest
precondition {y>=5}.)

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 3 of 13

Question 3. (14 points) A loopy invariant. One of our colleagues is trying to fix a
possibly buggy search method. They have heard that you know all about these fancy
“loop invariants” from CSE 331 and are hoping you might be able to help them.

Here is the code and the loop invariant they have come up with so far:

 public int findMinLoc(int[] arr) {
 int i = 1;
 int minLoc = 0;
 // inv: arr[minLoc] is min value in arr[0..i-1]
 while (i != arr.length) {
 { inv }
 if (arr[i] < arr[minLoc]) {

 {arr[minLoc] = min arr[0..i-1}	∧		arr[i]<arr[minloc]}	
 minLoc = i;
 {arr[minLoc] = min arr[0..i]}
 } else {

 {arr[minloc] = min arr[0..i-1]∧arr[i]>=arr[minloc]=>
 {arr[minLoc] = min arr[0..i]}
 i = i + 1;
 {arr[minLoc] = min arr[0..i-1]}
 }
 {(arr[minLoc] = min arr[0..i])
 ∨	arr[minLoc] = min arr[0..i-1]}
 }

 {i == arr.length ∧	(arr[minLoc] = min in arr[0..i])
 ∨	arr[minLoc] = min in arr[0..i-1]} =>
 {(arr[minLoc] = min in arr[0..arr.length])
 ∨	arr[minLoc] = min in arr[0..arr.length-1]}
 // post:
 // arr[minLoc] is min value in arr[0..arr.length-1]
 return minLoc;
 }

Your job is to discover whether this code can be proved correct using the given invariant
and the loop proof techniques (invariants, assertions, postconditions, etc.) we have
covered in class. Justify your answer by annotating the code above with assertions in
enough places to support your answer (i.e., you don’t have to include every possible
assertion, but include enough to clearly support your conclusion) and then explain your
conclusion briefly.

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 4 of 13

This question turned out to be a bit harder to grade than expected. Answers were
evaluated to see how well they demonstrated understanding of the various proof
rules for loops, conditional statements, and assignments. The question deliberately
did not require including all possible assertions to save time during the exam, so
sometimes we had to use our best judgement to decide when omitted steps were
straightforward enough that they didn’t need to be included compared to places
where too much was omitted and the answer didn’t show clear understanding of the
proof issues involved.

Once all the assertions are added to the code, we see that the assertion after the if
statement is not the same as the loop invariant. Our normal proof techniques do not
work cleanly in this case.

It turns out that the program “works”, in that it ultimately gets the right answer,
but almost by accident. When the if condition is true, variable minLoc is updated,
but i is not increased, which is why we do not get the loop invariant as the if-
statement postcondition after executing that branch of the if statement. The next
time around the loop, minLoc will not be updated, but i will be increased, so
eventually the search will reach the end of the array.

To actually prove that the method returns the right result, we would have to
carefully show that the loop does make progress, at least on every other iteration,
and that it eventually terminates with the right result. We did not focus on
termination proofs in CSE331 this quarter, so that proof would be beyond what our
basic correctness logic can show.

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 5 of 13

A rite of passage when people get their first apartment is a trip to Ikea to get some
furniture. Of course, Ikea furniture comes in kits to be assembled. The next several
questions concern classes Part and PartList which can be used to store information
about the collection of parts in a kit for a piece of furniture. The code for these classes is
included on separate pages at the end of the exam. You should remove those pages from
the exam and use them while answering these questions.

Question 4. (12 points) Let’s look at class Part. First, we need to complete the
equals and hashCode methods. Here are several possible return statements that
could appear in equals in place of the TODO comment.

 E1: return this.name.equals(p.name);
 E2: return this.weight == p.weight&&
 this.quantity == p.quantity;
 E3: return this.name.equals(p.name)&&
 this.weight == p.weight;
 E4: return true;

Now here are several possibilities for completing method hashCode replacing the
TODO there (as with the code above, all of these choices compile with no errors):

 H1: return 331;
 H2: return this.name.hashCode();
 H3: return this.name.hashCode() + 31*this.quantity;
 H4: return this.name.hashCode() + 31*(int)this.weight;

(a) (10 points) In the following table, put an X in the space if the given hash function
from the above list is consistent with (i.e., satisfies the requirements to be used with) the
given equality relation from the first list. Your answer should ignore whether or not the
equals relation actually is a correct equals method that satisfies the required properties
for equality. Just mark an X where the hashCode is consistent with (i.e., satisfies the
required properties for hashCode) given that particular definition of equals.

 E1 E2 E3 E4
H1 X X X X
H2 X X
H3
H4 X

(b) (2 points) Suppose we implement equals using the statement return
this.name.equals(p.name)&& this.weight == p.weight; (E3 above).
Given the above possibilities for hashCode (H1-H4) and this choice for equals, what
choice for hashCode would be best for the Part class? Pick one of H1-H4 and write
your answer below. You do not need to justify your answer.

 H4

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 6 of 13

Question 5. (12 points) ADT/RI/AF. Now on to the PartList class. The first thing
we need to do is be sure we understand the ADT that this class represents. To do that we
need to provide an abstract description of the class, a rep invariant, and an abstraction
function. Your answers should be consistent with the informal description of the class
and the given instance variables and code included with the supplied PartList class.

(a) (3 points) Give a suitable description of the PartList ADT and its abstract
value(s), as would normally appear in the JavaDoc comment right above the class
definition. (Hint: the answer might be quite short.)

A PartList is a mutable, unordered collection of non-null Part objects representing
the parts in a furniture kit. No two Parts in the PartList may have the same name.
A PartList value can be denoted as a set { p1, p2, …, pn }, where each pi is a Part.

(b) (5 points) Give a suitable representation invariant (RI) for PartList.

parts != null &&
no element in parts is null &&
for 0 <= i, j, < parts.size(), if i != j then
 parts.get(i).getName.equals(parts.get(j).getname()) is false.

(Note that the “no elements are null” restriction is needed since code in PartList
includes method calls on elements of the list, and that code will fail if an element of
the list is null. For the “no duplicates” part of the rep invariant, answers that were
less formal and said something like “if i!=j then parts i and j do not have the same
name” were perfectly fine.)

(c) (4 points) Give a suitable abstraction function (AF) for PartList.

AF(this) = the set { p1, p2, …, pi } where each pi is an element of the list parts.

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 7 of 13

Question 6. (12 points) As usual, the instructor who wrote this question still hasn’t
learned after all these years how to provide proper specifications for things. Below, fill
in a correct CSE 331-style specification for the addPart and the getPart methods of
class PartList. Your answer should be consistent with the given code and what it
does when executed. For CSE 331-specific custom tags, you can write @spec.xyz or
just @xyz – whichever you prefer.

 /** Add a new part to this PartList provided that no part
 * already in the list has the same name.
 *
 * @param p the new Part to be added to this
 *
 * @requires p!=null, and p.getName() is different from names
 * of other parts already present in this.
 *
 * @modifies this
 *
 * @effects p is added to this
 *
 *
 *
 *
 */
 public void addPart(Part p) { ... }

Note	that	the	precondition	(@requires)	is	needed	for	the	existing	code	in	addPart	
work	without	failures.	

 /** Return information about the part with the given name in
 * this PartList, or return null if not found.
 *
 * @param name the name of the desired part in this PartList
 *
 * @return the part p in this where p.getName().equals(name),
 * or null if no part in this has the requested name.
 *
 *
 *
 *
 *
 *
 *
 *
 */
 public Part getPart(String name)

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 8 of 13

Question 7. (10 points, 2 each) Representation exposure. As often happens, the client for
our PartList class has requested a change, this time to add a method that returns a list
of the Parts in the PartList. Here are four proposed implementations of a new
getParts method. For each proposed implementation, circle yes if there is a
representation exposure problem that could allow the client to do something that would
invalidate the rep invariant of the PartList class. Circle no if the method does not
expose the rep in a way that could cause this problem.

(a) public List<Part> getParts() {
 return parts;
 }

Can cause bugs due to rep exposure: yes no

(b) public List<Part> getParts() {
 return new ArrayList<Part>(parts);
 }

Can cause bugs due to rep exposure: yes no

(c) public List<Part>GetParts() {
 List<Part> copy = new ArrayList<Part>();
 for (Part p: parts) {
 copy.add(new Part(p.getName(), p.getWeight(),
 p.getQuantity()));
 }
 return copy;
 }

Can cause bugs due to rep exposure: yes no

(d) public List<Part> getParts() {
 return Collections.unmodifiableList(parts);

Can cause bugs due to rep exposure: yes no

(e) Of the four methods above, which would be the best choice (correct and efficient and
with no potential rep exposure bugs) if we want method getParts to return a list
containing the Parts in the PartList at the time the method was called, and which
will not change over time unless the client chooses to modify the returned list? Below,
write a single letter a through d giving your choice. You do not need to justify your
answer.

b (c also returns a correct result that will not change after it is returned to the
client, but it is more expensive because it makes unnecessary copies of the
immutable Part objects.)

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 9 of 13

Question 8. (10 points, 2 each) Overloading, overriding, and equals. This question is
about the following main method that uses the Thing and Holder classes printed on
the last separate code page at the end of the exam. Detach that page and use it to answer
this question. All of the code compiles and runs without errors.

 public static void main(String[] args) {
 Thing thingA = new Thing(8);
 Thing thingB = new Thing(8);
 Holder holdA = new Holder(8,-29);
 Holder holdB = new Holder(7,70);
 Object objThingA = thingA;
 Object objThingB = thingB;
 Object objHoldA = holdA;
 Object objHoldB = holdB;
 ______________________ ; // insert code from below here
 }
}

For each line of code below, indicate what happens if it is inserted by itself at the end of

the main method above and then the program is executed. For each one, circle the

correct answers to indicate which method is called during execution (Object.equals,

Thing.equals, or Holder.equals) and whether the method call returns true or

false. Circle only the class of the first equals method called, even if that method

calls another one.

(a) System.out.println(thingB.equals(holdA));

equals method executed: Object Thing Holder Result: true false

(b) System.out.println(objThingA.equals(thingA));

equals method executed: Object Thing Holder Result: true false

(c) System.out.println(holdB.equals(thingB));

equals method executed: Object Thing Holder Result: true false

(d) System.out.println(thingA.equals(objThingA));

equals method executed: Object Thing Holder Result: true false

(e) System.out.println(thingB.equals((Thing) objHoldB));

equals method executed: Object Thing Holder Result: true false

Answers that identified the wrong class but then circled a true/false answer that was
consistent with executing the equals method in the identified class received partial
credit.

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 10 of 13

Question 9. (4 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (2 point) What question were you expecting to appear on this exam that wasn’t
included?

Implement a Java compiler. Be sure to include all necessary library classes and
methods that are found the standard Java 11 distribution.

(b) (2 points) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 11 of 13

Code for classes Part and PartList. Remove these pages from the exam and
return them for recycling when you are done. This code is used in several questions in
the exam. Some parts of the code are incomplete or missing, and the questions address
those issues. Except for the missing pieces, all of the code here does compile and work
as intended.

Class Part: an immutable object representing a part in a furniture kit. An example of an
abstract Part would be ("nail", 1.2, 4), meaning there are 4 nails weighing 1.2 grams
each in this Part. A part must have a positive (i.e., >0) quantity and weight.

public class Part {
 // instance variables
 private String name; // name of this part
 private double weight; // weight in grams of a single
 // individual part
 private int quantity; // total number of this part in the
 // furniture kit

 // Creators
 /** construct a new Part with given properties */
 public Part(String name, double weight, int quantity) {
 this.name = name;
 this.weight = weight;
 this.quantity = quantity;
 }

 // observers
 public String getName() { return name; }
 public double getWeight() { return weight; }
 public int getQuantity() { return quantity; }

 // equals/hashCode
 /** return true if this Part is equal to o */
 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Part))
 return false;
 Part p = (Part)o;
 return /* TODO: figure out what to put here */;
 }

 @Override
 public int hashCode() {
 return /* TODO: figure out what to put here */;
 }

} // end class Part

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 12 of 13

Class PartList: a mutable unordered collection of Part objects representing the parts
in a furniture kit. No two parts in the PartList may have the same name.

public class PartList {
 // instance variables
 private List<Part> parts;

 /** construct new empty PartList */
 public PartList() {
 parts = new ArrayList<Part>();
 }

 /** Add a new part to this partlist provided that no part
 * already in the list has the same name. */
 public void addPart(Part p) {
 parts.add(p);
 }

 /** return information about the part with the given name in
 * this PartList, or return null if not found */
 public Part getPart(String name) {
 for (Part p: parts) {
 if (p.getName().equals(name)) {
 return p;
 }
 }
 return null;
 }

 /** return the total weight of all Parts in this PartList */
 public double getWeight() {
 double weight = 0.0;
 for (Part p: parts) {
 weight += p.getWeight() * p.getQuantity();
 }
 return weight;
 }

} // end of PartList

 CSE 331 22wi Midterm Exam 2/8/22 Sample Solution

 Page 13 of 13

Code for Thing/Holder classes used in equals overloading/overriding question.
Remove this page from the exam and return it for recycling when you are done.

Notice that the parameters to the equals methods have unusual types (possibly not
what they should be, but the question is about what happens given this code as written).

/** A Thing object holds an integer value. */
class Thing {
 private int t;
 public Thing(int t) {
 this.t = t;
 }
 public boolean equals(Thing o) {
 if (!(o instanceof Thing)) {
 return false;
 }
 Thing thing = (Thing) o;
 return this.t == thing.t;
 }
}

/** A Holder is a Thing plus a second integer value. */
class Holder extends Thing {
 private int h;
 public Holder(int t, int h) {
 super(t);
 this.h = h;
 }
 public boolean equals(Thing o) {
 if (!(o instanceof Thing)) {
 return false;
 }
 if (!(o instanceof Holder)) {
 return super.equals(o);
 }
 Holder holder = (Holder) o;
 return super.equals(holder) && this.h == holder.h;
 }
}

