
 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 1 of 13

Question 1. (12 points) Comparing specifications. Here are four different specifications
for a method that searches an integer array a to find the location of a negative number in
the array a.

Specification A
 @requires a != null and a.length > 0 and at least one element of a is negative (< 0)
 @return k such that a[k] < 0

Specification B
 @requires a != null and a.length > 0 and at least one element of a is negative (< 0)
 @return k such that a[k] < 0 and all elements in a[0..k-1] are >= 0

Specification C
 @requires a != null and a.length > 0 and exactly one element of a is negative (< 0)
 @return k such that a[k] < 0

Specification D
 @requires a != null and a.length > 0
 @return k such that a[k] < 0
 @throws NoSuchElementException if no element of a is negative (< 0)

Now suppose we have four different implementations I1 through I4, each of which is
known to satisfy one of the above specifications. Since an implementation that satisfies a
stronger specification will also satisfy a weaker specification, it’s entirely possible that
some of the implementations might satisfy additional specifications beyond the one
already shown below in the table.

Add an X in the following table in every square where the implementation given in the
left column will also satisfy the specification shown in the top row. An X has already
been supplied for each implementation and the specification it is known to satisfy.

impl \ spec spec. A spec. B spec. C spec. D

impl. I1 X X

impl. I2 X X X

impl. I3 X

impl. I4 X X X

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 2 of 13

It's mid-March and yesterday was π-day (3/14). Being CSE 331-trained software
specialists, it seems like it would be a good idea to create some code to keep track of
various fruits that could be used as pie fillings. Here is the code for several related
classes. Please leave this page in the exam. An extra copy of this page is included at
the end of the exam that you can remove for convenience while working. Answer
questions about this code on the next few pages.

/** Fruit for Pie fillings */
class Fruit {
 /** cut this Fruit into n slices */
 void slice(int n) { System.out.println(n + " Fruit slices"); }
}

class Cherry extends Fruit {
 /** cut this cherry into two slices */
 void slice() { slice(2); System.out.println("Cherry"); }
}

class Apple extends Fruit {
 /** return the taste of this apple */
 String flavor() { return "yummy"; }
 /** cut this apple into 8 slices */
 void slice() { slice(8); System.out.println("Apple"); }
}

class Fuji extends Apple {
 /** return the taste of this apple */
 String flavor() { return "sweet"; }
 /** cut this apple into n slices */
 void slice(int n) { System.out.println(n + " Fuji slices"); }
}

class GrannySmith extends Apple {
 /** return the taste of this apple */
 String flavor() { return "tart"; }
 /** cut this apple into 12 slices */
 void slice() { slice(12); System.out.println("Granny slices");}
}

Do not remove this page from the exam, but feel free to tear off the copy at the end of
the exam. Continue with questions about this code on the next page.

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 3 of 13

Question 2. (15 points). Overloading and overriding. The following table contains in
the left column lines of code from a main program that uses the fruit classes on the
previous page. Your job is to write in the right column the output produced when the
corresponding line of code is executed, or, if there is something wrong with that line of
code that keeps it from executing successfully such as a compile-time or run-time error,
you should give a very brief explanation of the problem (like “compile error – no such
method in ChocolateCake”). If a line of code produces more than one line of output,
write all of the output in the table entry in the correct order. If a line of code does not
have any errors and produces no output, leave the corresponding entry in the table blank.
The lines of code are executed in order (or at least attempted in the given order, although
some may not execute due to errors)

a) Fruit c = new Cherry();

b) c.slice(10); 10 Fruit slices

c) Fruit yum = new Apple();

d) System.out.println(yum.flavor()); Error – no flavor() method in Fruit

e) yum.slice(); Error – no slice() method in Fruit

f) Apple a = new Apple();

g) System.out.println(a.flavor()); yummy

h) a.slice(); 8 Fruit slices \n Apple

i) a.slice(3); 3 Fruit slices

j) Apple f = new Fuji();

k) f.slice(); 8 Fuji slices \n Apple

l) f.slice(3); 3 Fuji slices

m) GrannySmith gs = new
GrannySmith();

n) System.out.println(gs.flavor()); tart

o) gs.slice(); 12 Fruit Slices \n Granny slices

Note: \n is used above to show breaks between multiple output lines written when
the corresponding code is executed. Answers did not need to include this – as long
as the correct output was given, an answer received full credit.

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 4 of 13

Question 3. (12 points, 1 each) And now for the dreaded generics question. J Using the
Fruit class hierarchy from the previous pages, assume we have the following variables:

Object obj = null; Fruit fr = null; Cherry c = null;
Apple a = null; Fuji f = null; GrannySmith s = null;

List<? extends Apple> exta = new ArrayList<Apple>();
List<? extends Fuji> extf = new ArrayList<Fuji>();
List<? super Apple> supa = new ArrayList<Apple>();

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.
(Note that question only asks about type checking, so it doesn’t matter whether the
argument 1 in get(1) is out-of-bounds or not. The type checker also does not consider the
actual values stored in variables when deciding if they are being used properly.)

OK ERROR exta.add(a);

OK ERROR exta.add(f);

OK ERROR exta.add(null);

OK ERROR extf.add(f);

OK ERROR supa.add(s);

OK ERROR supa.add(obj);

OK ERROR obj = extf.get(1);

OK ERROR a = exta.get(1);

OK ERROR f = exta.get(1);

OK ERROR a = extf.get(1);

OK ERROR a = supa.get(1);

OK ERROR obj = supa.get(1);

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 5 of 13

Specifications and generic things. Now that we have classes to represent fruits of various
sorts, it seems like we should implement a class to hold a basket of fruits. One of the
new interns hacked up this class in an hour and it seems like a decent start, but, in the
usual CSE 331 exam style, it is lacking in various forms of documentation and might
have some problems – or maybe it does work correctly.

Answer questions about this code below and on the next few pages. Please leave this
page in the exam. An extra copy of this page is included at the end of the exam that you
can remove for convenience while working. ☞ Don’t forget the question at the bottom
of this page! ☜

// cse331 22wi final exam - fruit basket
public class Basket {
 private final List<Fruit> items; // items in this basket

 public Basket(){
 items = new ArrayList<Fruit>();
 }

 public void add(Fruit f) {
 items.add(f);
 }

 public List<Fruit> getItems() {
 return items;
 }

 public int getSize() {
 return items.size();
 }
}

Do not remove this page from the exam, but feel free to tear off the copy at the end of
the exam. Continue with questions about this code below and on the next pages.

Question 4. (2 points) This Basket class is basically a wrapper around a List
instance variable. Which design pattern is illustrated by the overall organization of this
class? (Circle the correct answer)

Factory Singleton Prototype Builder

Adaptor Composite Decorator Proxy

Iterator Observer Strategy Visitor

This is a use of a wrapper pattern for a List. Since the Basket interface is
different from the underlying List interface, it is an Adaptor, not a Decorator or
Proxy.

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 6 of 13

Question 5. (10 points) Class specification. This class is lacking the appropriate
CSE331-style documentation. For this question, supply a proper abstract description of
the class, a rep invariant, and an abstraction function. You should base your
specifications on the intended behavior inferred from the original code and comments.

(a) (3 points) Give an appropriate abstract description of the class that should appear in
the JavaDoc comment right before the first line of the class.

/**
 * A Basket is a mutable unordered collection of Fruit
 * objects { f1, f2, ..., fn } that may contain duplicates.
 * Items in the Basket are not null.
 *
 */
public class Basket { ... }

Grading note: The existing code will work even if null values can be added to a
Basket, but then the specification for getSize(), at least, is somewhat
unnatural, since normally that would be expected to return the number of Fruit
objects in the Basket. The easiest way to resolve this is to simply disallow nulls
in a Basket, as done here. However, if nulls are allowed, there was no penalty as
long as the other specifications for methods, the rep invariant, and the abstraction
function were consistent with that choice.

(b) (4 points) Give a suitable representation invariant for this class. You should use the
existing instance variable that is already present in the code (i.e., you should use the rep
that is already there). You should make any appropriate assumptions about how the
instance variable is used, but should not add more constraints to the rep invariant than are
needed for correct functioning.

items != null and items does not contain null values

(c) (3 points) Give a suitable abstraction function for this class. Your answer should use
information from your answers to parts (a) and (b) of the question as needed.

The entries in items[0..items.size()-1] represent the Fruit objects
{ f1, …, fn } that make up the contents of this Basket.

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 7 of 13

Question 6. (10 points, 5 each) Method specifications. Give appropriate CSE331-style
JavaDoc specifications for methods add and getSize. For CSE331 custom tags like
@requires (or any others) you are free to write @requires or @spec.requires. You should
base your specifications on the intended behavior inferred from the original code and
comments.

/**
 * Add a new piece of Fruit to this Basket
 *
 * @param f Fruit object to add to this
 *
 * @requires f != null
 *
 * @modifies this
 *
 * @effects Fruit object f added to this
 *
 *
 *
 *
 */
public void add(Fruit f) { ... }

/**
 *
 * Return the number of Fruit objects in this Basket
 *
 * @return number of Fruit objects contained in this
 *
 *
 *
 *
 *
 */
public int getSize() { ... }

Note: The synopsis line (the first line of text in each JavaDoc comment before the
tags like @param) absolutely is required in a correct JavaDoc specificaiton,
otherwise the method does not have a proper 1-line description in the class
summary in the generated JavaDoc web pages. In some old exams the synopsis line
was omitted by accident or supplied in the starter code given with the problem, so
many people missed this. We decided not to deduct points if it was omitted, but only
because of possible inconsistencies with previous published solutions, not because it
is not needed.

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 8 of 13

Question 7. (5 points) Are there any representation exposure problems in the Basket
class? (circle)
 Yes No

If there are representation exposure problems, give a brief description of what’s wrong
and describe one way to fix the problem. If there are no representation exposure
problems, leave the rest of this question blank.

Method getItems() returns a reference to the items instance variable, which
would allow clients to directly modify the representation data without accessing the
Basket through appropriate public operations.

The easiest solution is to have getItems() return a duplicate or unmodifiable
copy of the items list.

Note: we assume that Fruit objects are immutable and do not need to be copied,
since they contain no state that can be modified. Answers that said it could be
necessary to do a deep copy that would also copy all of the Fruit objects also
received full credit if they made the assumption that Fruit objects were mutable.

Question 8. (3 points) We would like to add an overloaded add method to this class that
clients could use to add all elements from any suitable collection to the contents of this
fruit Basket. The method would look like this:

 public void add(Collection<? extends Fruit> c) {
 items.addAll(c);
 }

What would be the best parameter type to write in the blank space in the above method’s
parameter list to allow this method to accept any Java collection as an argument provided
that the collection elements can be added to this Fruit Basket? (write your answer
in the blank space provided in the method parameter list above)

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 9 of 13

Question 9. (8 points) Generic classes. The code in the original Basket class actually
is quite general and does not have any real dependencies on particular properties of the
Fruit objects that are stored in it. Here is the original code for Basket again. Show
the modifications needed to change this class to a generic class where the elements in the
Basket are specified by a type parameter such as Basket<Fruit> or
Basket<String>. You should show the needed changes by writing in new additions
to the code or crossing out existing code and replacing it with updated code to add the
generic element type to the class. You should not make any other changes to the code or
add any other methods to it (specifically, don’t include the new add method that calls
addAll that was the subject of the previous question, and don’t repair any
representation exposure problems if they exist – just add generics to the existing initial
code below).

Changes needed shown in bold green. We need to add a generic type parameter
<E> to the class and then replace all occurrences of type Fruit with E throughout
the code.

public class Basket<E> {

 private final List<E> items; // items in this basket

 public Basket(){

 items = new ArrayList<E>();

 }

 public void add(E f) {

 items.add(f);

 }

 public List<E> getItems() {

 return items;

 }

 public int getSize() {

 return items.size();

 }

}

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 10 of 13

Question 10. (12 points) React. Consider the following React application structure:

This application collects the user’s first name (string), last name (string), eye color
(string), and age (number), and displays the information to the user before they can
submit it. The three components have the following behavior:

App: The top component. Should store and pass down user information. Additionally, it
includes four functions with the following stubs:

setUserFirstName(a: string)
setUserLastName(a: string)
setUserEyeColor(a: string)
setUserAge(a: number)

These functions can be used to set the fields in App’s state.

CollectInfo: Includes an interactive form. As the user enters their information, this
component should update App using the callback functions defined above after
performing the proper input validation and error handling.

DisplayInfo: This component should receive user information from App and
display it.

(problem continued on the next page)

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 11 of 13

Question 10. (cont.) Our React code also defines these interfaces:

interface One {
 first: string;
 last: string;
 eyeColor: string;
 age: number | undefined;
}

interface Two {
 first: string;
 last: string;
 eyeColor: string;
 age: string;
}

interface Three {
 name: string;
 eyeColor: boolean;
 age: string;
}

interface Four {
 first: string;
 last: string;
 eyeColor: string;
 age: number | undefined;
 isDisplayed: boolean;
}

interface Five {
 onFirstNameChange: (a: any)=>void;
 onLastNameChange: (a: any)=>void;
 onEyeColorChange: (a: any)=>void;
 onAgeChange: (a: any)=>void;
}

interface Six {
 onFirstNameChange: (a: any)=>any;
 onLastNameChange: (a: any)=>any;
 onEyeColorChange: (a: any)=>any;
 onAgeChange: (a: any)=>any;
}

Below are the headings for the three classes App, CollectInfo, and DisplayInfo.
Your job is to fill in the blanks with the correct interfaces from the above list so that the
components will work properly. An interface might be used more than once or might not
be needed at all. If more than one interface could be used in a particular space, pick the
more restrictive one. If no interface is needed in a particular space, that should be
indicated as usual using an empty pair of braces {} .

class App extends Component< { } , One > {…

class CollectInfo extends Component< Five , Two > {…

class DisplayInfo extends Component< One , { } > {…

Grading note: It turns out that One and Two are both fairly
reasonable answers to use as state for CollectInfo. Since the
age is represented by a number, at some point you will need to
convert the user's input string into a numeric value. The
conversion will likely happen in CollectInfo if you choose One
and in App if you choose Two. In other words, this design choice
boils down to deciding which component should be responsible for
converting the validated input into a number.

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 12 of 13

Question 11. (6 points, 2 each) Creational patterns. Suppose we have a program that
handles orders for a pizza restaurant. The program includes a class Pizza with many,
many subclasses for different kinds of pizzas, like VeggiePizza, PepperoniPizza,
and so forth. In different parts of the program there are various places where we need to
create new Pizza objects. Here are three examples of code that create a new Pizza of
some sort using one of the creational design patterns. Circle the name of the pattern that
is the best match to the code sequence:

(a) Pizza pie = genericPizza.clone();

Factory Singleton Prototype Builder Interning Dependency Injection

(b) Pizza pie = new PizzaMaker()
 .cheese("mozzarella")
 .toppings("mushrooms")
 .toppings("spinach")
 .size(size.LARGE)
 .make();

Factory Singleton Prototype Builder Interning Dependency Injection

(c) Pizza pie = getNewPizza();

Factory Singleton Prototype Builder Interning Dependency Injection

Question 12. (3 points) System integration. When building a large system, there are two
common strategies for the order in which to implement, combine, and test the different
parts of the system: top-down and bottom-up. These two strategies have different
characteristics and strengths. Assuming a project is an ordinary one, not relying on
unexpected technological innovations or other unusual breakthrough, what is often the
best overall strategy for building and integrating the parts: top-down, bottom-up, or some
combination of the two? Give a brief justification for your answer.

A combination is usually a good overall strategy. Primarily top-down is best to
make progress visible to the team and clients early, and to reveal significant design
flaws sooner when it is easier and less costly to fix them. However, selective bottom-
up implementation is important to include to be sure that major infrastructure
pieces are feasible and will be able to provide the performance needed.

A

B

F

C D

G

E

 CSE 331 22wi Final Exam 3/15/22 Sample Solution

 Page 13 of 13

Question 13. (2 free points) (All reasonable answers receive the point. All answers are
reasonable as long as there is an answer. J)

Draw a picture of something that you plan to do during spring break!

Congratulations from the CSE 331 staff!
Have a great break and see you in the spring!!

