
 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 1 of 12

Question 1. (16 points) Equality revisited. As we know, equality for subclasses is hard
to get right. We’d like to explore the issues involved in this question.

Suppose we have the following class that represents a cup that holds liquids:

public class Cup {
 protected final int volume;
 protected final String color;
 protected Liquid liquid; // contents of this cup

 public Cup(int volume, String color, Liquid liquid) {
 this.volume = volume;
 this.color = color;
 this.liquid = liquid;
 }

 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Cup)) {
 return false;
 }
 Cup c = (Cup) o;
 return this.volume==c.volume && this.color.equals(c.color) &&
 this.liquid.equals(c.liquid);
 }
}

We now want to add a new class, Mug, that is a Cup with a distinctive handle shape:

public class Mug extends Cup {
 private final Shape handle; // the shape of this mug’s handle

 public Mug(int volume, String color, Liquid liquid,
 Shape handle) {
 super(volume, color, liquid);
 this.handle = handle;
 }

 @Override
 public boolean equals(Object o) { ... }
}

You should assume that classes Liquid and Shape contain correct implementations
equals for those classes.

Do not remove this page from the exam, but feel free to tear off the copy of this page at
the end of the exam. Continue with questions about these classes on the next page.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 2 of 12

Question 1. (cont.) (16 points, 4 each) Here are four possible implementations of
method equals for class Mug. For each one, you should determine whether it satisfies
the specification for an equals method (it must be reflexive [a=a], symmetric [a=b
implies b=a], transitive [a=b and b=c implies a=c], and properly handle null as an
argument). If the method satisfies these properties, circle OK. If it does not satisfy some
property, circle all of the properties that are not satisfied. It doesn’t matter whether the
method computes a sensible value for equals – just whether the method satisfies the
specification for equals. The methods do compile successfully with no reported errors.

(a) public boolean equals(Object o) {
 return true;
 }

OK REFLEXIVE SYMMETRIC TRANSITIVE NULLArgument

(b) public boolean equals(Object o) {
 if (!(o instanceof Cup)) {
 return false;
 } else if (!(o instanceof Mug)) {
 return super.equals(o);
 } else {
 Mug m = (Mug) o;
 return super.equals(o) && this.handle.equals(m.handle);
 }
 }

OK REFLEXIVE SYMMETRIC TRANSITIVE NULLArgument

(c) public boolean equals(Object o) {
 if (!(o instanceof Mug)) {
 return false;
 }
 Mug c = (Mug) o;
 return this.volume == c.volume && this.color.equals(c.color)
 && this.liquid.equals(c.liquid);
 }

OK REFLEXIVE SYMMETRIC TRANSITIVE NULLArgument

(d) public boolean equals(Object o) {
 if (this == null && o == null) {
 return true;
 }
 return this == o;
 }

OK REFLEXIVE SYMMETRIC TRANSITIVE NULLArgument

Note: many of the problems arise when comparing combinations of Mug and Cup
objects.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 3 of 12

Question 2. (10 points, 1 each) Subclasses and generics – a traditional, annoying, but
apparently necessary question. Let’s assume that we have the Cup and Mug classes
from the previous page and an additional subclass of Cup (not a subclass of Mug) named
TeaCup.

public class Cup { ... }
public class Mug extends Cup { ... }
public class TeaCup extends Cup { ... }

Assume we have the following variables declared:

 Object o; Cup c; Mug m; TeaCup t;

 List<? extends Cup> lec;
 List<? super Cup> lsc;
 List<?> lq;

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR lec.add(c);

OK ERROR lq.add(o);

OK ERROR lsc.add(c);

OK ERROR lsc.add(t);

OK ERROR lq.add(null);

OK ERROR o = lq.get(0);

OK ERROR c = lq.get(0);

OK ERROR c = lec.get(0);

OK ERROR m = lec.get(0);

OK ERROR c = lsc.get(0);

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 4 of 12

A friend of yours is opening a new Café and they hired a Coders ‘R Us® graduate to
write a computer system to manage orders. When a customer places an order, the system
is supposed to keep track of the customer name and what they’ve ordered. The code is
incomplete, but here’s what was delivered before the Coders graduate left for a new job.
(It does compile without any reported errors.)

public class OrderQueue {
 private final List<String> names; // customer names
 private int size; // # pending orders
 // maps customer names to their orders
 private final Map<String, List<String>> orders;

 public OrderQueue(){
 names = new ArrayList<String>();
 size = 0;
 orders = new HashMap<String, List<String>>();
 }

 public OrderQueue(OrderQueue other) {
 this.names = other.names;
 this.size = other.size;
 this.orders = other.orders;
 }

 public void placeOrder(String name, List<String> contents) {
 names.add(name);
 orders.put(name, contents);
 size++;
 }

 public List<String> getNames() { return names; }

 public int getSize() { return size;}

 public Map<String, List<String>> getOrders() {
 return Collections.unmodifiableMap(orders);
 }

 public List<List<String>> getAllOrders() {
 List<List<String>> result = new ArrayList<List<String>>();
 for (String name : orders.keySet()) {
 List<String> order = orders.get(name);
 result.add(order);
 }
 return result;
 }
}

Do not remove this page from the exam, but feel free to tear off the copy of this page at
the end of the exam. Continue with questions about this code on the next pages.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 5 of 12

Question 3. (12 points) Class specification. Because we’re behind schedule and over
budget, we’re going to have to use the existing code. Before going further we need to add
some documentation so we have a better idea of how the class works. You should base
your answers on the apparent intended behavior in the original code and comments.

(a) (4 points) Give an appropriate abstract description of the class that should appear in
the JavaDoc comment right before the first line of the class.

/**
 * An OrderQueue is a collection of orders o1, ..., on.
 * Each order is a pair <name, items> where name is the
 * name of the person placing the order and items is
 * a list of the items in the order.
 *
 * No two orders in an OrderQueue may have the same name.
 *
 *
 *
 */
public class OrderQueue { ... }

(b) (4 points) Give a suitable representation invariant for this class. You should use the
existing instance variables that are already present in the code (i.e., you should use the
rep that is already there).

names and orders may not be null.
Each entry in names is a key in the map orders, and each key in orders appears in
names, i.e., the set of strings in names contains the same items as the set of strings
in the of orders keyset. (That implies that names may not contain any duplicate
entries.)
Variable size = names.size() = orders.size().

(c) (4 points) Give a suitable abstraction function for this class. Your answer should use
information from your answers to parts (a) and (b) of the question as needed.

Each <key, value> pair in orders corresponds to one order oi in the OrderQueue.
The key in each pair is a name associated with an order, and the value of the pair is
the list of items in that order. The list names holds a second copy of all of the
names that are keys in the orders map, stored in the sequence that the orders were
added to the OrderQueue. Variable size contains the number of items in the
OrderQueue, which is the same as the number of entries in both orders and
names.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 6 of 12

Question 4. (14 points, 2 each) Rep exposure. We want to be sure there are no rep
exposure problems in this code. For each of the following methods in the existing code,
circle OK if it does not create a rep exposure problem or circle PROBLEM if it does. If
you circle PROBLEM, give a brief explanation of what the problem is. If you circle OK
you do not need to explain your answer further.

(a) public OrderQueue(){ ... } OK PROBLEM
Explanation if problem:

(b) public OrderQueue(OrderQueue other){ ... } OK PROBLEM
Explanation if problem:

Shares fields with other object. Any change to either object affects the other one.

(c) public void placeOrder(String name, List<String> contents{...}
Explanation if problem: OK PROBLEM

Shares a list (order contents) with the caller. Even though Strings are immutable,
the caller can modify the List referenced by OrderQueue.

(d) public List<String> getNames(){ ... } OK PROBLEM
Explanation if problem:

Returns a reference to the names List to the caller, which the caller could modify.

(e) public int getSize() { ... } OK PROBLEM
Explanation if problem:

(f) public Map<String, List<String>> getOrders(){ ... }
Explanation if problem: OK PROBLEM

Although the caller cannot modify the returned Map directly, it can modify the List
values in the Map’s <key,value> pairs.

(g) public List<List<String>> getAllOrders(){ ... }
Explanation if problem: OK PROBLEM

The returned value is a list of references to the same Lists of order items stored in
the OrderQueue. These could be used to change the contents of any order
currently in the OrderQueue.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 7 of 12

Question 5. (18 points, 9 each) Graph searching. Now that the quarter is over we’re
going to take a trip! To Paris!! To help us plan, a friend has sent us a simplified map of
the Paris Metro showing some of the main stops we’ll be using. Here it is:

The map, of course, is a graph where the nodes are Metro stops and the edges are labeled
with Metro line names and travel times between stops. We would like to use our
knowledge of graph search algorithms to discover paths in the graph. Answer the
questions on the next page.

Do not remove this page from the exam, but feel free to tear off the copy of this page at
the end of the exam.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 8 of 12

Question 5. (cont.) (a) Find the path with fewest number of transfers (i.e., fewest
number of intermediate stops) between your Hotel (H) and the Luxembourg Gardens
(LG) and determine how much time it takes. Indicate the algorithm used to find your
answer. Fill in your answers below. If there are ties when computing the path, you
should pick the “lexicographically least path” (i.e., use alphabetical ordering).

(i) Algorithm used: ____BFS____ Total travel time: ___59 min.___

(ii) Path from H to LG with fewest transfers (show the line used – Blue, Green, etc. – and
travel time for each edge):

H to SC via Blue Line, time 10 min

SC to ADT via line Green Line, time 12 min

ADT to ET via line Purple Line, time 15 min

ET to C via line Pink Line, time 17 min

C to LG via line Yellow Line, time 5 min

(b) Find the fastest path (minimum travel time) from Sacre Coeur (SC) to Catacombs (C).
If there are two or more paths with the same minimum time, write down one of them. As
above, indicate the algorithm used and then show the path and total time.

(i) Algorithm used: ___Dijkstra’s___ Total travel time: ___41 min.___

(ii) Fastest path from SC to C (show the line used – Blue, Green, etc. – and travel time for
each edge):

SC to ADT via Green Line, time 12 min

ADT to ET via Purple Line, time 15 min

ET to ND via line Lime Line, time 4 min

ND to LG via line Orange Line, time 5 min

LG to C via line Yellow Line, time 5 min

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 9 of 12

Question 6. (18 points) A little bit of React. We’ve found the following sample of a
React application, and we’re trying to understand how it works. Here is the code; answer
questions about it on the next page. Some import/export statements in the code are not
shown. Note that the button text is just the literal character ‘+’ – it does not represent
string concatenation or some other operation.

class ShoppingCart extends Component {

 render() {
 return (
 <div>
 <Item name="Strawberry" price={1.00}/>
 <Item name="Milk" price={5.00}/>
 </div>
);
 }
}

class Item extends Component {

 constructor(props) {
 super(props);
 this.state = {
 quantity: 1
 };
 }

 increment = () => {
 this.setState((oldState) => {
 return {
 quantity: oldState.quantity + 1
 };
 });
 };

 render() {
 let totalPrice = this.state.quantity * this.props.price;
 return (
 <p>
 <button onClick={this.increment}>+</button>
 {this.state.quantity}x {this.props.name}: ${totalPrice}
 </p>
);
 }
}

Do not remove this page from the exam, but feel free to tear off the copy of this page at
the end of the exam. Continue with questions about this code on the next page.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 10 of 12

Question 6. (cont.) (a) (14 points) When the following index.html and index.js files are
loaded into a web browser, what is the final HTML page that is generated in the browser?
(i.e., what HTML would you see if you used the Chrome developer tools to look at the
page?) For simplicity, do not include attributes, just include the tags themselves and their
content as text.

index.html:
<html>
 <body>
 <div id="root"></div>
 </body>
</html>

index.js:
ReactDOM.render(<ShoppingCart />,
 document.getElementById('root'));

<html>
 <body>
 <div id=”root”>
 <div>
 <p> <button>+</button> 1x Strawberry: $1 </p>
 <p> <button>+</button> 1x Milk: $5 </p>
 </div>
 </div>
 </body>
</html>

(b) (4 points) The increment function causes the current quantity of an element to
increase by one, so users can add more than one item to their cart. It uses the alternative
version of setState that has a function parameter. That function receives, as its
parameter, the most recent state object that was passed in a call to setState, regardless
of the component lifecycle. Why is it necessary to use this version of setState, instead
of the regular setState and this.state.quantity + 1?
Hint: Consider what might happen if a user presses the button twice, very, very quickly.
Describe how it’s possible for two quick presses of the button to only cause the quantity
to increase once, and how the alternate version of setState prevents this.

setState is always a request to React to update the state sometime in the future.
If we used the “regular” version and the button was pressed twice very quickly, it’s
possible that the value inside this.state.quantity hasn’t updated from the
first press, meaning the second press won’t update the quantity value correctly. The
alternate version, however, is guaranteed to give us the most recent setState
call’s value, which means our calculation will be accurate.

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 11 of 12

Question 7. (10 points, 2 each) Design Patterns. Listed below are a number of design
problems that we’ve encountered in projects in this course. For each situation, we used a
specific design pattern to solve the problem. Circle the name of the pattern we used in
each situation. (There is a correct answer for each question.)

(a) To get a reference object that we could use to keep track of the <canvas>, we called
React.createRef().

Singleton Factory Method Adapter Iterator

(b) To create a CSVToBean object, we created another helper object and called multiple
methods on it to configure the CSVToBean object, finally calling a method that returns
an actual CSVToBean with all of our configurations.

Iterator Factory Method Builder Composite

(c) To allow the code in the provided text interface for the pathfinder application, which
is the same for all students, to interact with everyone’s different graph and pathfinding
implementations, we used the ModelConnector object.

Adapter Composite Iterator Strategy

(d) We implemented multiple path finding algorithms (BFS, Dijkstra) separate from the
implementation of the Graph that they operated on, to allow each individual use-case to
choose the correct algorithm for the job.

Factory Method Adapter Strategy Prototype

(e) Each React component can determine its own “final look” by overriding the
render() function, and components that contain other components use their children’s
render()functions to aid in calculating the result of their own render().

Prototype Builder Composite Iterator

 CSE 331 19su Final Exam 8/23/19 Sample Solution

 Page 12 of 12

Question 8. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

Draw a picture of something that you plan to do during the rest of the summer!

J

Congratulations from the CSE 331 staff!
Have a great vacation and see you in the fall!!

