
 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 1 of 16

Remember: For all of the questions involving proofs, assertions, invariants, and so forth,
you should assume that all numeric quantities are unbounded integers (i.e., overflow
cannot happen and there are no fractional parts to numbers) and integer division is
truncating division as in Java, i.e., 5/3 => 1.

Question 1. (12 points) (Backward reasoning) A traditional warmup question. Using
backwards reasoning, find the weakest precondition for each sequence of statements and
postcondition below. Insert appropriate assertions in each blank line. You should
simplify your final answers if possible.

(a) (5 points)

 { |x+1| > 3 } => { x+1>3 || x+1<-3 }

 => { x>2 || x<-4 }

 y = x + 1;

 { |2y| > 6 } => { |y| > 3 }

 z = 2 * y;

 { |z| > 6 }

(b) (7 points)

 { (y > 5 && y>0 && y<3) || (y<=5 && y>-2 && y<3) }

 => {false || (y > -2 && y < 3)} => { y > -2 && y < 3 }

 if (y > 5) {

 { 2*y > 0 && 2*y < 5 } => { y > 0 && y < 3 }

 z = 2 * y;

 { z > 0 && z < 5 }

 } else {

 { 2+y > 0 && z+y < 5 } => { y > -2 && y < 3 }

 z = 2 + y;

 { z > 0 && z < 5 }

 }

 { z > 0 && z < 5 }

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 2 of 16

Question 2. (16 points) Fibonacci! Recall that the Fibonacci numbers fib(k) are defined
as fib(0) = 0, fib(1) = 1, and fib(k) = fib(k-1) + fib(k-2) for k ≥ 2. The following method
is alleged to return fib(n). Write a suitable invariant and appropriate assertions to prove
that it works correctly. You should assume that the method works correctly for n < 2 and
do not need to handle that case. Provide the correct assertions and proof for n ≥ 2.

/** @return fib(n) for n >= 0. @requires n >= 0. */
public int fib(int n) {
 if (n < 2) return n; // base case – ignore in proof
 { n ≥ 2 }
 int k = 1;
 int fibk = 1;
 int fibprev = 0;
 { inv: fibk = fib(k) && fibprev = fib(k-1) }
 while(k < n) {
 { inv }
 int fibnext = fibk + fibprev;
 { inv && fibnext = fib(k+1) }
 fibprev = fibk;
 { fibk = fib(k) && fibnext = fib(k+1) && fibprev = fib(k) }
 fibk = fibnext;
 { fibk = fib(k+1) && fibprev = fib(k) }
 k = k + 1;
 { inv: fibk = fib(k) && fibprev = fib(k-1) }
 } // end of loop
 { post: k=n && fibk=fib(k) } => { fibk = fib(n) }
 return fibk;
}

Note: the loop condition should have been k!=n instead of k<n (a typo). With k!=n
as the loop condition it is trivial to conclude that k=n at the end of the loop. It is
possible to prove by induction that we must have k=n at the end of the loop given
that k=1 && n≥2 initially and k increases by 1 on each loop iteration. But since that
is clearly true we didn’t expect answers to prove that or even to argue it informally.

Many assertions and invariants contained things like fib(k+1) = fibprev+fibk. But
that does not contain enough information to actually assert which values are
contained in which variables as the values are changed by the assignments. It is also
impossible to assert anything about the final value of fibk to prove that the method
returns the correct result.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 3 of 16

Question 3. (9 points) Here are three specifications and three methods that might
implement them. Only the parts of the specifications that are different are shown. All of
the specifications should include @param amount, but that is omitted to save space.

Spec. A: /** @effects decrease balance by amount */

Spec. B: /** @requires amount >= 0 and amount <= balance
 * @effects decrease balance by amount */

Spec. C: /** @throws InsufficientFundsException if balance < amount
 * @effects decreases balance by amount */

Impl. 1: void withdraw(int amount) {
 balance = balance - amount;
 }

Impl 2: void withdraw(int amount) {
 if (balance >= amount) {
 balance = balance - amount;
 }
 }

Impl 3: void withdraw(int amount) {
 if (amount < 0) {
 throw new IllegalArgumentException();
 }
 balance = balance - amount;
 }

In the following grid, place an X in the square if the given implementation satisfies the
give specification. If the implementation does not satisfy the specification, leave the
square blank.

 Spec A Spec B Spec C

Impl 1 X X

Impl 2 X

Impl 3 X

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 4 of 16

Question 4. (14 points, 2 each) equals and method calls. One of the summer interns
who does not know Java very well has been playing around trying to define classes for
things made at a bakery. The intern is completely baffled by the behavior of this code,
which attempts to define equality for cakes and chocolate cakes. (Yes, this code does not
define equals correctly, but the question is asking about what actually happens given
the code that’s here. We will also leave aside the philosophical question of whether other
cakes can ever be equal to chocolate cakes in real life.) The code does compile and
execute without crashing.

public class Cake {
 protected int size; // visible in subclasses but not
 // to outside clients

 public Cake(int size) {
 this.size = size;
 }

 public boolean equals(Cake other) {
 return this.size == other.size;
 }
}

public class ChocolateCake extends Cake {
 private String kind; // kind of chocolate

 public ChocolateCake(int size, String kind) {
 super(size);
 this.kind = kind;
 }

 public boolean equals(ChocolateCake other) {
 return this.size == other.size &&
 this.kind.equals(other.kind);
 }

 public static void main(String[] args) {
 Cake cake1 = new Cake(1);
 Cake cake2 = new Cake(1);
 Object objectCake1 = (Object) cake1;
 Object objectCake2 = (Object) cake2;
 ChocolateCake chocolateCake =
 new ChocolateCake(1, "dark chocolate");
 // answer questions on the next page
 // about code inserted here.
 }
}

Remove this page from the exam and use it to answer the next question. Do not
write on this page or include it with the rest of the exam when you turn it in.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 5 of 16

Question 4. (cont.) For each line of code below, indicate what happens if it is inserted by
itself at the end of the main method on the previous page and executed. For each one,
indicate which method is called during execution (Object.equals, Cake.equals,
or ChocolateCake.equals) and whether the method call returns true or false.
Circle the correct answers.

(a) cake1.equals(cake2);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

(b) cake1.equals(chocolateCake);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

(c) chocolateCake.equals(cake1);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

(d) objectCake1.equals(cake1);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

(e) objectCake1.equals(chocolateCake);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

(f) objectCake1.equals(cake2);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

(g) cake1.equals(objectCake1);

Class whose equals method is executed: Object Cake ChocolateCake

Result: true false

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 6 of 16

Consider the following class that represents items that are stored in a warehouse. A few
of the methods in this class are provided below. Answer questions about this class on the
following pages. (This code does compile without errors.)

/** A StockItem is a mutable object that represents an item
 * in a warehouse inventory. The information in a StockItem
 * includes the name of the item, a category for the item,
 * the location in the warehouse where it is stored, and the
 * number of copies of this item currently in the warehouse.*/
public class StockItem {
 // instance variables
 private String name;
 private int quantity;
 private String category;
 private String location;

 // creators
 /** construct a new StockItem with given properties */
 public StockItem(String name, int quantity, String category,
 String location) {
 this.name = name;
 this.quantity = quantity;
 this.category = category;
 this.location = location;
 }

 // observers
 public String getName() { return name; }
 public int getQuantity() { return quantity; }
 public String getCategory() { return category; }
 public String getLocation() { return location; }

 // mutator
 public void setQuantity(int q) { quantity = q; }

 // equals
 /** return true if this StockItem is equal to o */
 @Override
 public boolean equals(Object o) {
 if (!(o instanceof StockItem))
 return false;
 StockItem other = (StockItem)o;
 return this.name.equals(other.name) &&
 this.category.equals(other.category) &&
 this.location.equals(other.location);
 }

Remove this page from the exam and use it to answer the following questions. Do
not write on this page or include it with the rest of the exam when you turn it in.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 7 of 16

Question 5. (8 points, 2 each) (hashCode) Since our StockItem class includes an
equals method, we need to provide a suitable hashCode method to go with it. Here
are four possible hashCode implementations. Each of them compiles. For each one
you should indicate whether the implementation satisfies the contract (specification) for
hashCode given the existing equals method in StockItem and, if it does, whether
it is a good, adequate, or poor choice for hashCode. Put an X next to the best answer.

(a) public int hashCode() {
 return this.name.hashCode();
 }
_____ Incorrect (does not satisfy the contract for hashCode)
__*__ Correct but poor quality
__X__ Correct with adequate quality (not terrible but not particularly great)
_____ Correct with good/high quality
*Note: A hashCode using the string name will be significantly better quality than
something like the constant returned in part (b). However, the wording of the
question was unclear enough that we decided to give credit for “poor” in this case.

(b) public int hashCode() {
 return 1;
 }
_____ Incorrect (does not satisfy the contract for hashCode)
__X__ Correct but poor quality
_____ Correct with adequate quality (not terrible but not particularly great)
_____ Correct with good/high quality

(c) public int hashCode() {
 return this.name.hashCode() ^ this.quantity;
 }
__X__ Incorrect (does not satisfy the contract for hashCode)
_____ Correct but poor quality
_____ Correct with adequate quality (not terrible but not particularly great)
_____ Correct with good/high quality
Note: quantity is not used in StockItem.equals, so it cannot be used in
hashCode. If it is used, then two StockItems that are equal might not have the
same hashCode.

(d) public int hashCode() {
 return this.name.hashCode() ^ this.category.hashCode() ^
 this.location.hashCode();
 }
_____ Incorrect (does not satisfy the contract for hashCode)
_____ Correct but poor quality
_____ Correct with adequate quality (not terrible but not particularly great)
__X__ Correct with good/high quality

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 8 of 16

The next questions use the StockItem class from the previous question. Suppose we
now define a class to hold a collection of StockItems. Here is the start of the class
definition:

/** A collection of StockItems {s1, s2, ..., sn}. No two
 * StockItems have the same name. */
public class Stock {
 // instance variable
 Private List<StockItem> items; // StockItems in this
 // Stock collection

 ...
}

Question 6. (6 points) (JavaDoc and specs) Our Stock class contains the following
constructor which, alas, is missing the usual CSE 331-style specification. Complete the
JavaDoc comment so it properly specifies the operation of this constructor with
appropriate JavaDoc tags and fields. (For CSE 331-specific tags like requires, you can
use either @requires or @spec.requires – both will receive full credit. Also, you
almost certainly won’t need all this space.)

 /** construct new empty Stock collection
 *
 *
 * @effects construct an empty Stock collection
 *
 *
 *
 *
 *
 */
 public Stock() {
 items = new ArrayList<StockItem>();
 }

Notes: @modifies is not appropriate in a constructor specification since the
constructor initializes a new object and does not modify the state of an existing one.
Similarly, @returns is not appropriate either since a constructor is not a value-
returning method.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 9 of 16

Question 7. (11 points) RI, AF, and checkRep (Hint: these are pretty simple – don’t
panic if the answers are short.) More questions about the Stock class, from the previous
page. Your answers should be consistent with the instance variable and constructor code
given there.

(a) (4 points) Give a suitable representation invariant (RI) for class Stock.

items != null and each entry in items != null,
and if 0 <= i, j < items.size() and i != j, then
items.get(i).getName().equals(items.get(j).getName()) is false.

(It would also be fine to write that no two StockItems in items have the same
name instead of the last part of the above)

(b) (3 points) Give a suitable abstraction function (AF) for class Stock.

A collection of StockItems where each element of items is a StockItem in the
collection.

(c) (4 points) Complete the implementation of checkRep() for class Stock.

// terminate execution with an assertion failure if a violation
// of the rep invariant is discovered, otherwise return silently
private void checkRep() {
 assert items != null: "items is null";
 for (StockItem item: items) {
 assert(item != null): "element in items is null";
 }
 for (int i = 0; i < items.size(); i++) {
 for (int j = i+1; j < items.size(); j++) {
 assert !items.get(i).getName()
 .equals(items.get(j).getName())
 : "duplicate item name found in items";
 }
 }
}

Note: Some of the explicit null checks could be omitted since this checkRep will
fail if a method call is attempted on a null entry in items. The null checks were
included in this solution to provide a place for useful error messages if an assertion
fails. It would also be fine to check all possible pairs of entries in items for
duplicate names as long as an entry is not compared to itself.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 10 of 16

Question 8. (8 points) (Another specification) Our Stock class has the following
method, which returns a list of all of the StockItems whose location matches the
method parameter. As before, complete the JavaDoc comment so it properly specifies
the operation of this method using CSE 331 specification conventions.

 /** Return a list of StockItems whose location match the
 * the method parameter.
 *
 * @param location the location whose matching StockItems
 * are to be included in the returned list.
 *
 *
 * @returns a new List containing all Stockitems in this whose
 * location matches the requested location parameter.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
 public List<StockItem> getItemsAtLocation(String location) {
 List<StockItem> result = new ArrayList<StockItem>();
 for (StockItem item: items) {
 if (item.getLocation().equals(location)) {
 result.add(item);
 }
 }
 return result;
 }

Note: It would also be plausible to have a precondition @requires location
!= null, and solutions that included that received full credit. But it turns out the
method will work properly (by accident) even if location is null, because
equals will return false in that case without causing an error.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 11 of 16

Question 9. (10 points) Representation exposure. Take another look at the
getItemsAtLocation method on the previous page.

(a) (2 points) Does this method create any potential representation exposure problems,
either for this class or any other class? (circle)

 Yes No

(b) (5 points) Give a brief, but complete explanation and justification for your answer to
part (a). A few sentences should be sufficient. Answers that are correct but excessively
long will not necessarily receive full credit.

The returned list contains references to StockItems that are also referenced by
the Stock collection. Since these are mutable, a client can use the result from
getItemsAtLocation to modify the representation of the Stock object.

(c) (3 points) If there are any potential representation exposure problems, give a brief but
complete description of how to fix them (you do not need to write actual Java code). If
there are no potential representation exposure problems, just write “none” to receive full
credit for this part of the question.

A straightforward way would be to make a (deep) copy of the StockItems that
have a matching location and are to be returned in the result list.

However, it would not be correct to return an unmodifiable collection or change the
specification of StockItem to require it to be immutable. Both of those would
violate the client’s expectations about the return value promised by the original
method specification.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 12 of 16

Question 10. (12 points, 3 each) Testing. Describe four distinct black-box tests that
could be used to verify that the getItemsAtLocation method from the previous
problem works properly. Each test description should describe the test input and
expected output. For full credit each test should be different in some significant way
from the other tests (think about boundary conditions and subdomains, etc.). You should
not provide JUnit or other code, just a clear, precise description of each test, and your
descriptions should be a few lines each, at most. If you want to write a specific
StockItem as part of a test you can use something like (name, quantity, category,
location), i.e., (gum, 17, food, bin42), but you don’t have to do this.

There are a huge number of possible tests. Here are a few. In general the tests
should have precisely specified inputs and outputs

(a) Input or test setup:

Create an empty Stock object
Compute getItemsAtLocation(“seattle”)

Expected output:

Empty list

(b) Input or test setup:

Create a Stock object containing the single StockIem (ufo, 5, spaceship, area51)
Compute getItemsAtLocation(“seattle”)

Expected output:

Empty list

(continued on next page)

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 13 of 16

Question 10. (cont.)

(c) Input or test setup:

Create a Stock object containing the single StockIem (ufo, 5, spaceship, area51)
Compute getItemsAtLocation(“area51”)

Expected output:

List containing the single StockIem (ufo, 5, spaceship, area51)

(d) Input or test setup:

Create a Stock object containing these items:
 (skittles, 17, candy, aisle3)
 (doritos, 42, junk, aisle3)
 (tofu, 4, notmeat, aisle4)
Compute getItemsAtLocation(“aisle3”)

Expected output:

List containing:
 (skittles, 17, candy, aisle3)
 (doritos, 42, junk, aisle3)

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 14 of 16

Some short-answer questions to wrap up.

Question 11. (3 points) Test metrics. There are several metrics that are used to measure
test coverage. In alphabetical order, some of the coverage metrics we looked at were
branch, loop, path, and statement coverage. One tradeoff between these is that the most
comprehensive metrics are also the most expensive. Write a list of these four metrics
from least to most expensive and comprehensive.

Statement

Branch

Loop

Path

Question 12. (3 points) Tests for bugs. One of the guidelines for testing is that when a
bug is discovered, you should create a test for it and add it to the test suite permanently.
The question is why should we retain this test forever? After all, once we’ve fixed the
bug we no longer need the test, do we? (Be brief!)

The bug represents some sort of defect that was introduced into the program.
Whatever circumstances led to that happening could potentially happen in the
future for the same or different reasons. We want to retain the test that reveals this
bug to ensure that we continue to check for it in case the problem recurs as the
program evolves.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 15 of 16

Queston 13. (3 points) Preconditions in specs. Suppose are writing a method and we
have a choice between using @throws IllegalArgumentException if x<0
and @requires x>=0 in the method specification. Neither option is significantly
harder or more expensive to implement. Which is the better choice to include if the
method is going to be included in a widely distributed library, and why? (briefly!)

Use @throws. That means that the behavior of the method has a complete instead
of partial specification, and clients can know exactly what will happen for all inputs,
unlike a precondition, where the behavior can’t be predicted or tested if the
precondition is not met.

Question 14. (3 points) Checked vs. unchecked exceptions. Java makes a distinction
between checked exceptions (things like FileNotFoundException) and unchecked
ones (like NullPointerException). Checked exceptions are required to be
included in a throws clause in a method heading if the method can throw them, while
unchecked exceptions do not have this requirement. Why did the Java designers decide
to treat checked exceptions this way rather than treating them like unchecked exceptions,
which do not need to be declared as part of the method heading? (briefly!!)

Checked exceptions represent unusual results that are legitimate, if unusual or
unexpected, outcomes of a computation. Because of the Java requirements, client
code must either handle these situations or indicate as part of the client specification
that they do not handle them. Either way the outcome cannot be accidentally
ignored since client code is required to deal with it in some way.

 CSE 331 19sp Midterm Exam 5/6/19 Sample Solution

 Page 16 of 16

Question 15. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

A popular choice here was forward reasoning. That was omitted to make the test a
bit shorter.

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 No opinion / don’t care

 None of the above. My answer is ________________________.

Variations on “no” were most popular, but there were a significant number of “yes”
answers.

