
 CSE 331 19sp Final Exam 6/11/19

 Page 1 of 18

Name __ UW ID# ______________

There are 12 questions worth a total of 125 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Please do NOT remove any pages from the middle of the exam this time. There are
extra copies at the end of the exam of the full pages of code that you can detach and
reference during the exam if you want.

There is an additional blank page with extra space for your answers if you need more
room after all the questions but before the detachable pages.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 125

1. ______ / 20

2. ______ / 12

3. ______ / 12

4. ______ / 14

5. ______ / 14

6. ______ / 10

7. ______ / 12

8. ______ / 10

9. ______ / 7

10. ______ / 8

11. ______ / 5

12. ______ / 1

 CSE 331 19sp Final Exam 6/11/19

 Page 2 of 18

Question 1. (20 points) Correct code via proofs. Recall that Java supports multi-
dimensional arrays, but they are different than the ones found in C and other languages.
A 2-D Java array is really an array of arrays. The top-level array has one entry for each
row pointing to the array containing the elements of that row, and each row can have a
different length. So, for example, if we declare int a2d[][] = {{1,2,3}, {4},
{}, {5,6,7,8}}; we have an array with 4 rows. The first row has three elements
(1, 2, 3), the second row has one element (1), the third row is empty, and the fourth row
has four elements. An individual element of an array can be referenced using the
notation a[r][c], and a[r] by itself references the array that is stored in row r. The
expression a.length returns the number of rows in array a, and a[r].length
returns the number of elements in row r.

(a) (12 points) The following method is alleged to return the total number of elements in
a 2-D Java array. Provide a suitable loop invariant inv and assertions to prove that it
returns the correct result.

public static int numElts(int[][] lst) {

 { pre: __ }
 int num = 0;
 int i = 0;

 { inv: __ }
 while (i != lst.length) {

 { ___ }
 num += lst[i].length;

 { ___ }
 i++;

 { ___ }
 }

 { post: ___ }

 return num;
}

(continued on next page)

 CSE 331 19sp Final Exam 6/11/19

 Page 3 of 18

Question 1. (cont.) (b) (8 points) The following method, flatten, returns all of the
elements of a 2-D array in a single 1-D array. For example, the result of flatten on
our example 2-D array containing {{1,2,3}, {4}, {}, {5,6,7,8}} is the 1-D
array whose contents are {1,2,3,4,5,6,7,8}. Your only job in this part of the
question is to provide a suitable loop invariant inv to complete the proof. All of the rest
of the code and proof are provided for you. In the postcondition we write a[0..i-1]
to mean the subsequence of a containing a[0] up to and including a[i-1]. This is not
legal Java code, but is helpful for writing assertions in the proof.

Write the appropriate loop invariant in the blank line right before the start of the loop.

public static int[] flatten(int[][] lst) {
 { pre: lst != null && for all 0<=i<lst.length, lst[i] != null }
 int[] res = new int[numElts(lst)];
 int iOuter = 0;
 int iInner = 0;
 int iRes = 0;

 { inv: ___ }
 while (iRes != res.length) {
 if (iInner != lst[iOuter].length) {
 res[iRes] = lst[iOuter][iInner];
 iInner++;
 iRes++;
 } else {
 iOuter++;
 iInner = 0;
 }
 }
 { post: for all i, j, res[numElts(lst[0..i - 1]) + j] = lst[i][j] }
 return res;
}

 CSE 331 19sp Final Exam 6/11/19

 Page 4 of 18

Specifications and debugging. The following code implements a very simple queue
ADT. In the usual CSE 331 exam style, it is woefully lacking in various forms of
documentation, it may not be correct (i.e., it may be buggy), and there may be other
problems (or maybe it actually does work). Please leave this page in the exam. An
extra copy of this page is included at the end of the exam that you can remove for
convenience while working.

// a finite queue of characters
// add() can only be called a finite number of times before the
// queue is “used up”, no matter how many times get() is called
public class CharQueue {
 // instance variables
 private char[] chars;
 private int current; // current position
 private int end; // end of data

 // construct new CharQueue with given capacity
 public CharQueue(int n) {
 chars = new char[n];
 current = 0;
 end = 0;
 }

 // append new character to queue if room.
 // return true if character appended, otherwise return false.
 public boolean add(char ch) {
 if (end < chars.length) {
 chars[end] = ch;
 end = end + 1;
 return true;
 } else {
 return false;
 }
 }

 // return oldest character in the queue and remove it
 // throw NoSuchElementException if queue contains no characters
 public char get() {
 if (current <= end) {
 char result = chars[current];
 current++;
 return result;
 } else {
 throw new NoSuchElementException();
 }
 }
}

Do not remove this page from the exam, but feel free to tear off the copy at the end of
the exam. Continue with questions about this code on the next page.

 CSE 331 19sp Final Exam 6/11/19

 Page 5 of 18

Question 2. (12 points) Class specification. This class is lacking the appropriate
CSE331-style documentation. For this question, supply a proper abstract description of
the class, a rep invariant, and an abstraction function. You should base your
specifications on the intended behavior inferred from the original code and comments.

(a) (4 points) Give an appropriate abstract description of the class that should appear in
the JavaDoc comment right before the first line of the class.

/**
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
public class CharQueue { ... }

(b) (5 points) Give a suitable representation invariant for this class. You should use the
existing instance variables that are already present in the code (i.e., you should use the
rep that is already there).

(c) (3 points) Give a suitable abstraction function for this class. Your answer should use
information from your answers to parts (a) and (b) of the question as needed.

 CSE 331 19sp Final Exam 6/11/19

 Page 6 of 18

Question 3. (12 points, 6 each) Method specifications. Give appropriate CSE331-style
JavaDoc specifications for methods add and get. For CSE331 custom tags like
@requires (or any others) you are free to write @requires or @spec.requires. You should
base your specifications on the intended behavior inferred from the original code and
comments.

/**
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
public boolean add(char ch) { ... }

/**
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
public char get() { ... }

 CSE 331 19sp Final Exam 6/11/19

 Page 7 of 18

Question 4. (14 points) There’s a bug in the code!! (well, at least one) Using the
systematic debugging strategies discussed in CSE 331 we want to diagnose and fix it.
Answer the following questions about the bug. If there’s more than one bug, pick a
particular one and answer the questions for it.

(a) (4 points) Symptom and hypothesis. What is the observed failure and what is your
hypothesis about what the defect is and where is it located?

(b) (6 points) Write a JUnit test that demonstrates the presence of the defect by failing
when executed with the original code.

 CSE 331 19sp Final Exam 6/11/19

 Page 8 of 18

Question 4. (cont.) (c) (4 points) Describe how to repair the defect to fix the problem.
After the repair, the test from part (b) should succeed. You can either give a very precise
description of what to fix in the original code, or rewrite the original code for the
modified method(s) below showing how to repair the defect. Be sure it is clear what you
have changed. If there is more than one possible way to fix the problem, pick the most
reasonable one.

 CSE 331 19sp Final Exam 6/11/19

 Page 9 of 18

It’s summer and it’s time for picnics! But since it’s a CSE 331 picnic, we have to write
some code to keep track of the food. Here is the code. Please leave this page in the
exam. An extra copy of this page is included at the end of the exam that you can remove
for convenience while working. Answer questions about this code on the next few pages.

/** food for picnics */
abstract class Food {
 /** request n servings of this Food item */
 abstract public void order(int n);
}

class Hotdog extends Food {
 public void order(int n)
 { System.out.println(n + " hotdogs"); }
}

class Dessert extends Food {
 public void order(int n)
 { System.out.println(n + " desserts"); }
 public void order() { this.order(1); }
}

class Icecream extends Dessert {
 public void order() { this.order(2); }
 public void order(int n) { System.out.println(n + " scoops"); }
}

class Cake extends Dessert {
 public void order()
 { this.order(2); System.out.println("cake"); }
}

class ChocolateCake extends Cake {
 public void order(int n)
 { System.out.println(n + " chocolate cake"); }
}

Do not remove this page from the exam, but feel free to tear off the copy at the end of
the exam. Continue with questions about this code on the next page.

 CSE 331 19sp Final Exam 6/11/19

 Page 10 of 18

Question 5. (14 points, 2 points each). Here are several groups of statements that might
be found in a program that uses the classes on the previous page. For each group, if the
statements compile and execute successfully without any errors, write the output that is
produced. If there is an error, explain in a sentence what is wrong.

(a) Food meat = new Hotdog();
 meat.order(4);

(b) Dessert yum = new ChocolateCake();
 yum.order();

(c) Cake yummy = new ChocolateCake();
 yummy.order(2);

(d) Food strawberry = new Icecream();
 strawberry.order();

(e) Icecream vanilla = new Icecream();
 vanilla.order();

(f) Dessert chocolate = new Icecream();
 chocolate.order();

(g) Food lemon = new Cake();
 lemon.order(3);

 CSE 331 19sp Final Exam 6/11/19

 Page 11 of 18

Question 6. (10 points, 1 each) And now for the dreaded generics question. J Using the
Food class hierarchy from the previous pages, assume we have the following variables:

Object obj; Food food; Hotdog hot; Dessert des;
Icecream ice; Cake cake; ChocolateCake choc;

List<? extends Dessert> extd;
List<? extends Cake> extc;
List<? super Cake> supc;

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR extd.add(des);

OK ERROR extd.add(cake);

OK ERROR supc.add(cake);

OK ERROR supc.add(choc);

OK ERROR supc.add(des);

OK ERROR cake = extc.get(1);

OK ERROR cake = supc.get(1);

OK ERROR choc = extc.get(1);

OK ERROR choc = supc.get(1);

OK ERROR food = supc.get(1);

 CSE 331 19sp Final Exam 6/11/19

 Page 12 of 18

Question 7. (12 points) A little bit of React. We have discovered the following fragment
of a React web app. App is the top-level component when the page is rendered. This
code runs without errors when the page is rendered.

class App extends Component {
 constructor(props) {
 super(props);
 this.state = {
 favorite: "Raspberry"
 };
 }
 render() {
 return (
 <div>
 <Basket fruit={this.state.favorite} />
 <Basket fruit={"Apple"} veggie={"Broccoli"} />
 </div>
);
 }
}
export default App;

class Basket extends Component {
 constructor(props) {
 super(props);
 console.log(this.props);
 this.state = {
 fruit: "Blueberry"
 };
 }
 render() {
 return (
 <p>Basket of: {this.props.fruit}</p>
);
 }
}
export default Basket;

(a) (6 points) What output is written to the console log when this code is executed?

(b) (6 points) What html code is generated when this code is executed?

 CSE 331 19sp Final Exam 6/11/19

 Page 13 of 18

Question 8. (10 points, 2 each) Design patterns. In the projects we built this quarter we
wound up using a lot of classic design patterns and strategies, even though we didn’t
make a big point at the time about which ones we were using and where. But now,
looking back, it’s interesting to identify where the patterns were used. Here is a list of
the main patterns and design organizations (like MVC, which is not, strictly speaking, a
pattern but is a key idea). We didn’t use all of them but we did use several.

Adapter, Builder, Composite, Decorator, Dependency Injection, Factory method, Factory
class/object (often called Abstract Factory), Iterator, Intern, Interpreter, Model-View-
Controller (MVC), Observer, Procedural, Prototype, Proxy, Singleton, Strategy, Visitor

For each of the situations below, identify the most specific pattern or design principle
used in that situation. You only need to write the pattern name, you do not need to
explain further. If there is more than one possible answer, pick the one that is the best
match.

(a) Registering a function to be called when a user event happens (like a click on a GUI
button)

(b) Separating the main graph data and algorithms that process it from user interface
classes and objects.

(c) Isolating (separating) the search algorithms for the graph (Dijkstra’s, and breadth-first
search/BFS) from the basic classes that contained the graph data (nodes and edges).

(d) Creating the Java “bean” parser by calling successive methods to add details and
adjust the created object step-by-step rather than having a single constructor do all the
work with one constructor invocation.

(e) Create an object by calling a single method to return the appropriate object rather than
using the java new operator.

 CSE 331 19sp Final Exam 6/11/19

 Page 14 of 18

Question 9. (7 points) System integration. When building a large system, there are two
common strategies for the order in which to implement, combine, and test the different
parts of the system: top-down and bottom-up. These two strategies have different
characteristics and strengths. Please keep your answers short. You are welcome to use
the diagram to the right in your explanations if you like; it is mainly intended as a
reminder of the topic from the lecture slides.

(a) (2 points) Describe one major (not minor) advantage of the top-down strategy
compared to bottom-up.

(b) (2 points) Describe one major (not minor) advantage of the bottom-up strategy
compared to top-down.

(c) (3 points) Assuming a project is an ordinary one, not relying on unexpected
technological innovations or other unusual breakthrough, what is often the best overall
strategy for building and integrating the parts: top-down, bottom-up, or some
combination of the two? Give a brief justification for your answer.

A

B

F

C D

G

E

 CSE 331 19sp Final Exam 6/11/19

 Page 15 of 18

A couple of short questions about types to wrap up.

Question 10. (8 points). In the Java language, type String is a Java subtype of
Object. It also is true that the array type String[] is a Java subtype of Object[].

(a) (5 points) From what we know about correct (true) specification subtyping, is
String[] actually a true specification subtype of Object[]? Give a brief
justification for your answer, either explaining why this subtyping relationship is correct,
or give an example showing how this allows programs to typecheck with no errors at
compile time and yet have a type error during execution.

(b) (3 points) Why did the Java designers decide to specify that String[] is a Java
subtype of Object[]? (You can explain this in terms of your answer to part (a) if that
is useful.)

 CSE 331 19sp Final Exam 6/11/19

 Page 16 of 18

Question 11. (5 points) Some generic puzzles. In Java a method can have generic type
parameters even if it is declared in a class that is not itself generic. For instance, the
following method definition and declarations are legal:

public class C {
 static <T> void func(T param, T[] array) {
 T var;
 T[] vec;
 // code omitted
 ...
 }

But it is not allowed to create objects or arrays of a generic type like T inside such a
function. For instance, both of the following two lines of code are rejected at compile
time if they are added to the above method:

 var = new T();
 vec = new T[10];

Why is this not possible? What is the technical reason that neither of these statements are
allowed?

 CSE 331 19sp Final Exam 6/11/19

 Page 17 of 18

Question 12. (1 free point) (All reasonable answers receive the point. All answers are
reasonable as long as there is an answer. J)

Draw a picture of something that you plan to do this summer!

Congratulations from the CSE 331 staff!
Have a great summer and see you in the fall!!

 CSE 331 19sp Final Exam 6/11/19

 Page 18 of 18

Additional space for answers if needed. Please indicate clearly which questions you
are answering here, and also be sure to indicate on the original page that the rest of
the answer can be found here.

