Name:

CSE331 Autumn 2019, Midterm Examination
October 28, 2019

Please do not turn the page until 10:30.

Rules:

After the exam starts, rip out the last page and do not turn it in.

The exam is closed book, closed notes, closed electronics, closed mouth, open mind.
Please stop promptly at 11:20.

There are 100 points, distributed unevenly among 7 questions (all with multiple parts):

The exam is printed double-sided.

Advice:

Read questions carefully. Understand a question before you start writing.

Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

If you have questions, ask.

Relax. You are here to learn.

Name:

1. (18 points) Consider this code, where we assume a, b, ¢, and d are all arrays holding int values.

// precondition: a.length = b.length and a.length = c.length and a.length = d.length
int i = 0;
while(i != a.length) {

c[i] = min(alil,b[i]); // min returns min of its arguments

d[i] = max(alil,b[i]); // max returns max of its arguments

i=1i+1;

}

(a) Given the precondition above, for each of the following potential post-conditions, indicate whether
it always holds (i.e., it is a valid post-condition), sometimes holds, or never holds.

i. for all 0 <= i < a.length, (alil+b[i] = c[i]l+d[i])

cli] OR alil] = d[il)

ii. for all 0 <= i < a.length, (a[il]

iii. (for all 0 <= i < a.length, alil c[i]l) OR (for all 0 <= i < a.length, ali] = d[i])
iv. for all 0 <= i < a.length, d[i] < c[i]

v. for all 0 <= i < a.length, c[i] < d[i]

vi. The sum of all elements in a is < the sum of all elements in d

(b) Assume now the specified post-condition is just the first one above:
for all 0 <= i < a.length, (alil+b[i] = c[i]+d[i])
For each possible loop invariant for the loop in the code, indicate A, B, or C as follows:

A. Tt is not a correct loop invariant.
B. It is a correct loop invariant, but it is too weak to establish the post-condition.
C. It is a correct loop invariant and it is strong enough to establish the post-condition.

i. for all 0 <= j < i, (aljl+b[j] = c[jl+d[j1)

ii. for all 0 <= j < i, (alj]l = c[j] or aljl = d[jl) and (b[j] = c[j] or b[jl = d[jl)
iii. for all 0 <= j < i, (aljl = c[iD

iv. for all 0 <= j < i, (c[jl <= d[jD)

v. for all 0 <= j < i, (c[j]l = min(aljl,b[j]) and d[j]l = max(aljl,b[j1))

vi. for all 1 <= j < i, (c[j-1] <= c[jD

Name:

2. (12 points)
S1:

S2:

S3:

S4:

(For

O@requires i >= 0 && i < max
Oreturns i+l

@returns i+l
@requires i >= 0
@throws BadBadBad if i >= max

@returns i+1

@throws BadBadBad if i < 0 or i >= max
@returns i+1

Here are four specifications and three implementations:

I1: int addOne(int i, int max) {
if (i < max) {
return i+1;
} else {
return -1;
}
}

I2: int addOne(int i, int max) {
return i+1;

}

I3: int addOne(int i, int max) {
if (i >= max) {
throw new BadBadBad() ;
}
return i+1;

}

all questions below, if the answer is none, explicitly write “none”.)

List all the specifications above that I1 satisfies.

List all the specifications above that I2 satisfies.

List all the specifications above that I3 satisfies.

List all the specifications above that are stronger than S1 (do not include S1).

List all the specifications above that are stronger than S2 (do not include S2).

List all the specifications above that are stronger than S3 (do not include 83).

List all the specifications above that are stronger than 84 (do not include S4).

Name:

. (27 points) See the two classes defined on the last page of the exam. Rip out that page and do not
turn it in. The two classes are two different attempts to implement an ADT that represents a mutable
integer in the limited range from negative max to max, where max should be a positive number passed to
the constructor. Operations are increment (add one), decrement (subtract one), negate, and convert
to a String. If incrementing or decrementing would produce an abstract value outside the limited
range, then the increment and decrement operations should instead do nothing.

(a) Given the informal overview above, give a CSE331-style Javadoc specification for the constructor.

(b) Given the informal overview above, give a CSE331-style Javadoc specification for the increment
operation.

(¢) What does this code print?

MaxMagnitudeIntl il = new MaxMagnitudeInt1(10);
il.negate();

il.increment();
System.out.println(il.toString());

(d) What does this code print? (Hint: It is not the same as the previous question.)

MaxMagnitudeInt2 i2 = new MaxMagnitudeInt2(10);
i2.negate();

i2.increment();
System.out.println(i2.toString());

(e) Complete this code snippet to produce an even shorter example demonstrating that the two classes
do not behave the same and indicate what is printed.

MaxMagnitudeIntl il = new MaxMagnitudeInt1(10);

System.out.println(______________);

MaxMagnitudeIntl i2 = new MaxMagnitudeInt2(10);

Problem continues with parts (f)-(j) on the next page.

Name:

(f) Rewrite the negate method in MaxMagnitudeInt2 so that MaxMagnitudeIntl and MaxMagnitudeInt2
always behave the same, meaning they satisfy all the same specifications.

(g) Assuming the new negate method you wrote in (f), write a checkRep () method for MaxMagnitudeInt?2
to describe its representation invariant.

(h) Assuming the new negate method you wrote in (f), in 1-2 English sentences, give the abstraction
function for MaxMagnitudeInt2.

(i) Does MaxMagnitudeInt?2 suffer from representation exposure? (No explanation required.)

() If there are other methods for MaxMagnitudeInt2 beyond those you see, is it possible that
MaxMagnitudeInt?2 suffers from representation exposure? (No explanation required.)

Name:

4. (11 points) This problem considers adding to MaxMagnitudeIntl (not MaxMagnitudeInt2) a log-
ging/history feature that makes the history of values the object has had part of the abstract state,
implemented as follows:

e negate, increment, and decrement all have a call to Log() ; added at the beginning of the method

bodies.

e We add this code to the class:

private List<Integer> history = new ArrayList<Integer>();
private void log() {
history.add(val);

}
public int getNthNewestValue(int n) {
if (n==0) {
return val;
} else {
return history.get(history.size() - n);
}
¥

public List<Integer> getAllHistory() {
return history;

}

Can getNthNewestValue cause representation exposure? If so, fix the method to avoid it.

Can getNthNewestValue throw an exception? If so, in one English sentence, give an appropriate
precondition for clients that is sufficient to avoid an exception and does not leak implementation
details.

Can getAllHistory cause representation exposure? If so, fix the method to avoid it.

Can getAllHistory throw an exception? If so, in one English sentence, give an appropriate
precondition for clients that is sufficient to avoid an exception and does not leak implementation
details.

Name:

5. (12 points) This problem considers MaxMagnitudeInt2 (not MaxMagnitudeIntl). You can assume
MaxMagnitudeInt?2 has your revised negate method from 3(f), but it doesn’t actually matter.

We consider adding this definition of equals to the class:

public boolean equals(Object o) {
if (! (o instanceof MaxMagnitudeInt2))
return false;
MaxMagnitudeInt2 m = (MaxMagnitudeInt2) o;
return m.magnitude == this.magnitude
&% (this.magnitude == 0 || m.isPositive == this.isPositive);

}
(a) Is this definition reflexive?
(b) Is this definition symmetric?
(c) Is this definition transitive?

d) Is it possible for o1 and 02 to be bound to instances of MaxMagnitudeInt?2 such that the assertion
&
below fails?

if (ol.equals(02)) {
ol.increment();
ol.increment();
ol.decrement();
ol.decrement();
assert(ol.equals(02));

(e) Is it possible for o1 and 02 to be bound to instances of MaxMagnitudeInt2 such that the assertion
below fails?

if (ol.equals(02)) {
ol.increment();
02.increment () ;
ol.decrement();
02.decrement () ;
assert(ol.equals(o2));

(f) Is this a correct hashCode implementation?

public int hashCode() {
return magnitude;

}

(g) Is this a correct hashCode implementation?

public int hashCode() {
return magnitude + max;

3

Name:

6. (15 points) (Testing)

We expect each answer below to be brief, roughly one English sentence.

(a)

What makes a test a black-box test?

Given only a test that passes, the specification for the code being tested, and the code being
tested, can you tell if a test is a black-boz test? Explain.

What makes a test an implementation test?

Given only a test that passes, the specification for the code being tested, and the code being
tested, can you tell if a test is an implementation test? Explain.

What makes a test a regression test?

Given only a test that passes, the specification for the code being tested, and the code being
tested, can you tell if a test is a regression test? Explain.

Name:

7. (5 points) (Readings questions)

(a)

What does DRY stand for in the readings assigned?

Can a Java for-each loop always be used instead of a Java for loop even though style guidelines
might prefer one or the other in different circumstances? (No explanation needed.)

Does “Design By Contract” mean, among other things, explicitly documenting method precondi-
tions? (No explanation needed.)

Does “Design By Contract” mean, among other things, writing specifications before writing im-
plementations? (No explanation needed.)

Does “Design By Contract” mean, among other things, that methods in Java should not use
assertions to check that preconditions hold? (No explanation needed.)

Name:

This page is blank. If you put any answers on it, clearly indicate on the page with the question that
you have done so.

Name:

Rip this page out and do not turn it in.

public class MaxMagnitudeIntl {
private int max;
private int val = 0;

public MaxMagnitudeIntl (int m) {
max = m;

}

public void negate() {
val = - val;

}

public void increment() {
if(val < max) {
val++;
}
}

public void decrement() {
if(val > - max) {
val--;
}
}

public String toString() {
return "" + val;

}

public class MaxMagnitudeInt2 {
private int max;
private int magnitude = O;
private boolean isPositive = true;

public MaxMagnitudeInt2 (int m) {
max = m;

¥

public void negate() {
isPositive = ! isPositive;

¥

public void increment() {

if (magnitude == 1 && ! isPositive) {

magnitude = 0;
isPositive = true;

} else if (isPositive) {
if (magnitude < max) {

magnitude++;

¥

} else {
magnitude——;

}

}

public void decrement() {
if (magnitude == 0) {
magnitude = 1;
isPositive = false;
} else if (isPositive) {
magnitude—-—;
} else {
if (magnitude < max) {
magnitude++;

}
}

public String toString() {
String sign = "";
if (!isPositive) {
sign = "-";
}

return sign + magnitude;

