
Name:

CSE331 Autumn 2019, Final Exam
December 9, 2019

Please do not turn the page until 8:30.

Rules:

• After the exam starts, rip out the last page and do not turn it in.

• The exam is closed book, closed notes, closed electronics, closed mouth, open mind.

• Please stop promptly at 10:20.

• There are 135 (not 100) points, distributed unevenly among 9 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. (16 points) Like many problems in this exam, this problem refers to the Range class implemented on
the last page of the exam. This problem focuses on the specification and implementation of the class
itself.

(a) Specifying the ADT that Range implements would include a class overview. Give such an overview,
including a definition of abstract values.

(b) Give an abstraction function for Range. Assume there are no ill-formed instances of Range,
meaning the representation invariant always holds because it is just “true.”

(c) Give a method specification for setLow.

(d) Give a method specification for toArray, including a @requires clause that is strong enough to
prevent toArray from throwing an exception, but not any stronger.

Solution:

(a) A Range represents a sequence of integers: low, low+1, low+2, ..., high with mutable bounds.
An abstract value has two abstract fields: the lower bound of the sequence (low) and the upper
bound of the sequence (high). If high is less than low, then the range is the empty sequence (of
zero integers).

(b) The AF is very simple: The low abstract field is the value of the low field and the high abstract
field is the value of the high field.

(c) @modifies this

@effects changes the lower bound of the sequence to lo

(d) (Note a zero-length array is allowed in Java, so technically we do need the “plus 1” in the solution
below.)

@requires the lower bound of this (low) is <= the upper bound of this

(high) plus 1

@returns an int array of length high - low + 1 with elements low, low

+ 1, ..., high in that order



Name:

2. (7 points) Consider this code, which uses the Range class:

class CountDivisibleBy {

private int count;

private int divisor;

public CountDivisibleBy(int d) {

count = 0;

divisor = d;

}

public void m(int i) {

if(i % divisor == 0) {

count++;

}

}

public int getCount() {

return count;

}

}

class Main {

public static void foo() {

Range r = new Range(3,10);

CountDivisibleBy it1 = new CountDivisibleBy(4);

CountDivisibleBy it2 = new CountDivisibleBy(4);

r.forEach(it1);

System.out.println(it1.getCount());

r.setHigh(17);

r.forEach(it1);

System.out.println(it1.getCount());

r.forEach(it2);

System.out.println(it2.getCount());

}

}

(a) The code does not type-check. Explain exactly how to change the code so that it does. (Your
answer should be minimal, not “silly” answers like deleting almost everything.)

(b) Assuming your fix from part (a), what does the foo method print when executed?

Solution:

(a) The first line needs to be class CountDivisibleBy implements IntTaker.

(b) 2

6

4



Name:

3. (9 points) This problem considers 3 variants of the Range class that are “fixed” (unchanging) because
they do not have setter methods. Assume the Range ADT is specified according to your answers in
Problem 1.

class FixedRange1 extends Range {

public FixedRange1(int lo, int hi) {

super(lo,hi);

}

public void setLow(int lo) { /* do nothing */ }

public void setHigh(int hi) { /* do nothing */ }

}

class FixedRange2 {

private int low;

private int high;

public FixedRange2(int lo, int hi) {

low = lo;

high = hi;

}

public int getLow() { return low; }

public int getHigh() { return high; }

public int[] toArray() {

int[] ans = new int[high-low+1];

for(int i=0; i < high-low+1; i++) {

ans[i] = low+i;

}

return ans;

}

public void forEach(IntTaker it) {

for(int i=low; i <= high; i++) {

it.m(i);

}

}

}

class FixedRange3 {

private Range r;

public FixedRange3(int lo, int hi) {

r = new Range(lo,hi);

}

public int getLow() { return r.getLow(); }

public int getHigh() { return r.getHigh(); }

public void forEach(IntTaker it) { r.forEach(it); }

public int[] toArray() { return r.toArray(); }

}

(a) Is FixedRange1 a Java subtype of Range?

(b) Is FixedRange1 a true subtype of Range?

(c) Is FixedRange2 a Java subtype of Range?

(d) Is FixedRange2 a true subtype of Range?

(e) Is FixedRange3 a Java subtype of Range?

(f) Is FixedRange3 a true subtype of Range?



Solution: (a) yes, (b) no, (c) no, (d) no, (e) no, (f) no



Name:

4. (15 points) In this problem, you will describe how to implement the class ProperRange:

class BadRangeBoundException extends Exception { // a checked exception

... // you are not asked about this implementation

}

class ProperRange {

private int low;

private int high;

... // you are asked about this implementation

}

ProperRange should have one constructor and the same six methods as Range. The difference from
Range is that a ProperRange always has a positive length (so, for example, toArray would always
return an array with ≥ 1 element). Any code that would violate this invariant should instead throw
the checked exception BadRangeBoundException.

(a) Implement a constructor for ProperRange that takes initial values for low and high.

(b) Which methods would have identical implementations in Range and ProperRange?

(c) For each method that would not have identical implementations, give an implementation for
ProperRange.

(d) Implement a checkRep method for ProperRange.

(e) Explain in 1–2 English sentences why ProperRange cannot be implemented as a subclass of Range.

Solution:

(a) public ProperRange(int lo, int hi) throws BadRangeBoundException {

if (lo > hi) {



throw new BadRangeBoundException();

}

low = lo;

high = hi;

}

(b) getLow, getHigh, toArray, forEach.

(c) public void setLow(int lo) throws BadRangeBoundException {

if (lo > high) {

throw new BadRangeBoundException();

}

low = lo;

}

public void setHigh(int hi) throws BadRangeBoundException {

if(hi < low) {

throw new BadRangeBoundException();

}

high = hi;

}

(d) private void checkRep() {

assert(low <= high);

}

(e) An overriding method cannot throw a checked exception unless the superclass’ signature for the
method indicates that the exception (or a superclass of it) might be thrown.



Name:

5. (15 points) In this problem, we create a subclass of the original Range class that has listeners that
are notified whenever a bound is changed. Here is a partial solution:

interface BoundChangeListener {

void onBoundChange(int low, int high);

}

class RangeWithBoundChangeListeners extends Range {

private List<BoundChangeListener> listeners;

public RangeWithBoundChangeListeners(int low, int high) {

super(low,high);

listeners = new ArrayList<BoundChangeListener>();

}

private void notifyListeners() { ... }

public void addListener(BoundChangeListener listener) { ... }

}

(a) Complete the implementations of notifyListeners and addListener.

(b) Complete the implementation by overriding methods as needed to notify listeners of bounds
changes.

Parts (c) and (d) are on the next page.



Name:

(c) Consider:

class MysteryListener implements BoundChangeListener {

public void onBoundChange(int low, int high) {

throw new Error("I did not want that to happen");

}

}

How would adding an instance of MysteryListener to an instance of RangeWithBoundChangeListeners
affect the behavior of the RangeWithBoundChangeListeners?

(d) Suppose we want to have a listener count how many times the high bound of a range is increased,
meaning the new bound is higher than the old bound.

i. Why is implementing such a listener difficult or impossible?

ii. Describe how you could redesign the listener interface for RangeWithBoundChangeListeners
to make such a listener easy to implement. Be specific about what definitions you would
change.

Solution:

(a) Note we have to use getter methods, but we gave almost full credit for accessing a private field
defined in the superclass.

private void notifyListeners() {

for(BoundChangeListener listener : listeners) {

listener.onBoundChange(getLow(),getHigh());

}

}

public void addListener(BoundChangeListener listener) {

listeners.add(listener);

}

(b) public void setLow(int low) {

super.setLow(low);

notifyListeners();

}

public void setHigh(int high) {

super.setHigh(high);

notifyListeners();

}

(c) Any call to setLow or setHigh would cause an Error to be thrown.

(d) i. The listener is not notified of the old value. (The listener could store the previous value the
previous time it was notified but that’s not good enough as it wouldn’t have the the value
when it was first added as a listener.)

ii. Change the signature of onBoundChange to pass to the callback both the old and new values,
something like:
void onBoundChange(int oldlow, int oldhigh int newlow, int newhigh);



Name:

6. (20 points) This problem makes ranges generic. This code gets you started:

interface RangeElementTaker<T> {

void m(T i);

}

interface RangeElement<T> extends Comparable<T> {

T next();

}

class GenericRange<T extends RangeElement<T>> {

private T low;

private T high;

public GenericRange(T lo, T hi) {

low = lo;

high = hi;

}

...

}

(a) Add implementations of getLow, getHigh, setLow, setHigh, and forEach to GenericRange. Do
not implement toArray.

(b) While it is possible to implement toArray correctly in GenericRange, it is somewhat more difficult
than forEach for a couple specific reasons. Describe one such reason.

Part (c) is on the next page.



Name:

(c) Define a class RangeInteger such that
new GenericRange<RangeInteger>(new RangeInteger(3),new RangeInteger(10)) typechecks
and behaves like new Range(3,10). Hint: Your class will need an int field, which for simplicity
you can make public rather than defining a getter method.

Solution:

(a) public T getLow() { return low; }

public T getHigh() { return high; }

public void setLow(T lo) { low = lo; }

public void setHigh(T hi) { high = hi; }

public void forEach(RangeElementTaker<T> it) {

for(T i=low; i.compareTo(high) <= 0; i = i.next()) {

it.m(i);

}

}

(b) There are two reasons either of which was worth full credit:

• We cannot create an array of a generic type, so we have to create an array of type Object

and then cast it to T[].

• We have to know what length array to make, but we cannot do high-low+1, so we would
have to do something like store each call to next in an ArrayList and then copy over to an
array or make a first pass from low to high just to figure out the length we need.

(c) class RangeInteger implements RangeElement<RangeInteger> {

public int num;

public RangeInteger(int n) {

num = n;

}

public int compareTo(RangeInteger ri) {

return num - ri.num;

}

public RangeInteger next() {

return new RangeInteger(num+1);

}

}



Name:

7. (12 points) The InternedRange subclass of Range defined here is a bad idea. It is an attempt at
using the interning design pattern to make sure that no two instances of InternedRange have identical
bounds. But it has multiple defects.

class InternedRange extends Range {

private static HashMap<InternedRange,InternedRange> internedRanges =

new HashMap<InternedRange,InternedRange>();

public static InternedRange rangeFactory(int lo, int hi) {

InternedRange r = new InternedRange(lo,hi);

if(internedRanges.containsKey(r)) {

return internedRanges.get(r);

}

internedRanges.put(r,r);

return r;

}

public InternedRange(int lo, int hi) {

super(lo,hi);

}

}

(a) The code above does not require clients to use the factory method to get an InternedRange. How
would you change the implementation to require this?

(b) Explain in roughly 1 English sentence why the call to containsKey in the code always returns
false.

(c) Explain in roughly 1–2 English sentences the undesirable behavior that results from the call to
containsKey in the code always returning false.

(d) Even if you fixed the problem in parts (b) and (c) (which we are not asking you to do), explain
in roughly 1–2 English sentences why the interning design pattern, even if implemented correctly,
is inappropriate for the Range ADT as defined in this exam.

Solution:

(a) The constructor needs to be private.

(b) Neither Range nor InternedRangeoverrides equals, so we inherit reference equality, but r will
not refer to the same object as anything already in internedRanges.



(c) The factory will always put another new object in internedRanges and return that new object,
so we get no space savings and internedRanges grows on each call.

(d) You should not intern mutable ADTs – we introduce sharing/aliasing that we should not: mutating
a bound will affect all ranges that had the same bounds before the mutation.



Name:

8. (15 points) We consider this generic static method using the generic List definition in Java’s standard
library:

static <T1> void foo(List<T1> x, List<T1> y, T1 z, boolean b) {

if(b) {

z = y.get(0);

}

x.set(0,z);

}

(a) For each of the following potential changes to the first line of foo, choose one of the following:

A. foo no longer type-checks

B. foo still type-checks, all calls to foo that used to type-check still do, and no new calls to foo

type-check

C. foo still type-checks, all calls to foo that used to type-check still do, and some additional
calls to foo that did not used to type-check now do

D. foo still type-checks, but some calls to foo that used to type-check no longer do

i. static <T1, T2 extends T1> void foo(List<T2> x, List<T1> y, T1 z, boolean b){

ii. static <T1, T2 extends T1> void foo(List<T1> x, List<T2> y, T1 z, boolean b){

iii. static <T1, T2 extends T1> void foo(List<T1> x, List<T1> y, T2 z, boolean b){

iv. static <T1, T2 extends T1> void foo(List<T2> x, List<T2> y, T1 z, boolean b){

v. static <T1, T2 extends T1> void foo(List<T2> x, List<T1> y, T2 z, boolean b){

vi. static <T1, T2 extends T1> void foo(List<T1> x, List<T2> y, T2 z, boolean b){

vii. static <T1, T2 extends T1> void foo(List<T2> x, List<T2> y, T2 z, boolean b){

(b) Which of the potential changes in part (a) has the same meaning as this potential change?
static <T1> void foo(List<T1> x, List<? extends T1> y, T1 z, boolean b){

(c) Complete this change to the first line of foo such that foo still type-checks and supports more
client calls than any of the other variations considered thus far. (Do not write/change the method
body, only the first line of the method.)
static <T1, T2 extends T1, T3 extends T2> void foo(...){

(d) Give one final first-line for foo that uses a wildcard and allows the same client calls as your answer
to part (c).

Solution:



(a) i. A

ii. C

iii. A

iv. A

v. A

vi. C

vii. B

(b) static <T1, T2 extends T1> void foo(List<T1> x, List<T2> y, T1 z, boolean b){

(c) static <T1, T2 extends T1, T3 extends T2> void foo(List<T1> x, List<T3> y, T2 z, boolean b) {

(d) static <T1, T2 extends T1> void foo(List<T1> x, List<? extends T2> y, T2 z, boolean b) {

or static <T> void foo(List<? super T> x, List<? extends T> y, T z, boolean b)



Name:

9. (26 points) (Short Answer, continues on to next page)

(a) For each of the following techniques, answer “yes” if it designed to reduce the distance from defect
to failure and “no” otherwise.

i. Checking the representation invariant at the beginning of every public method in an ADT

ii. Improving documentation as you inspect code during debugging

iii. Automatically running test suites every time code is committed to version control

iv. Keeping a log of experiments you try during debugging

v. Adding assertions to your code during debugging

(b) Which statement best describes the proper way in React for a component c to pass data to its
parent p, i.e., the component that contains c?

i. c uses setState to modify a field of an object shared by c and p

ii. c passes a Prop to p that p uses to update p’s state

iii. p provides a Javascript function to c via a Prop and c can call the function to update p’s state

iv. c calls p’s componentDidUpdate

(c) Which statement best describes how the client and the server in your campusPaths application
communicate?

i. The client encodes the source and destination as a URL and the server encodes the path as
a JSON object.

ii. The server encodes the source and destination as a URL and the client encodes the path as
a JSON object.

iii. The client encodes the source and destination as a JSON object and the server encodes the
path as a URL.

iv. The server encodes the source and destination as a JSON object and the client encodes the
path as a URL.

(d) For each of the following, answer “yes” if the caller can assume the operation has completed as
soon as the caller continues executing and “no” if the caller cannot assume that.

i. In React, calling setState to update part of a component’s state

ii. In React, fetching data from a web server

iii. In Java, using new to create an instance of an anonymous inner class

iv. In (non-React) JavaScript, passing an array to a function so that the function can return
multiple values by adding them to the array via assignment statements



Name:

(e) Which statement about the Model/View/Controller design pattern is not accurate?

i. It decouples the model, the view, and the controller.

ii. An implementation usually also uses the Observer design pattern.

iii. The view needs to be built on top of a graphical user interface (GUI) library.

iv. The view and the controller may or may not be implemented in the same programming
language.

(f) For each of the following, answer “yes” if the design pattern is intended to reduce the amount of
memory used by an application and “no” otherwise

i. Interning

ii. Builder

iii. Flyweight

iv. Adapter

v. Visitor

(g) Which of the following is not a benefit of structuring a large application in terms of a software
architecture?

i. Communicating to other developers the code structure using agreed-upon terminology

ii. Forbidding forms of communication among modules that would increase coupling

iii. Easier regression testing

iv. Better modularity

(h) In at most one English sentence, what is the simplest way to estimate the cost of developing a
software system?

(i) Yes or no (no explanation): Is it a good idea in practice to mix aspects of top-down implementation
and bottom-up implementation?

Solution:

(a) i. yes

ii. no

iii. yes

iv. no

v. yes

(b) (iii)



(c) (i)

(d) i. no

ii. no

iii. yes

iv. yes

(e) (iii)

(f) i. yes

ii. no

iii. yes

iv. no

v. no

(g) (iii)

(h) Consider only the cost of developer time, basically the developers’ salary times the amount of
time estimated for each person

(i) Yes



Name:

This page is blank. If you need the space here to complete your answers to a problem, please do so, but
indicate on the page with the problem that the graders need to look here.



Rip this page out and do not turn it in.

When the exam refers to “the Range class,” it means the class definition in this code:

interface IntTaker {

void m(int i);

}

class Range {

private int low; // lower bound of range

private int high; // upper bound of range

public Range(int lo, int hi) {

low = lo;

high = hi;

}

public int getLow() {

return low;

}

public int getHigh() {

return high;

}

public void setLow(int lo) {

low = lo;

}

public void setHigh(int hi) {

high = hi;

}

public int[] toArray() {

int[] ans = new int[high-low+1];

for(int i=0; i <= high-low; i++) {

ans[i] = low+i;

}

return ans;

}

public void forEach(IntTaker it) {

for(int i=low; i <= high; i++) {

it.m(i);

}

}

}


