
CSE 331 Summer 2022

Software Design & Implementation

Section: HW9, JSON, and Fetch

CSE 331



CSE 331 Summer 2022

Reminders

• React is new and very different! Start early and ask questions

• HW8 due 11pm Thursday (8/11)

Upcoming Deadlines



Last Time…

CSE 331 Summer 2022

Today’s Agenda

• HW9 Overview
• JSON
• Fetch

• HW8 Overview
• React Examples
• Using Leaflet for Maps in React



CSE 331 Summer 2022

Homework 9 Overview

• Creating a new web GUI using React

– Display a map and draw paths between two points on the map.

– Similar to your React app in HW8 – but you may add more!

– Send requests to your Java server (new) to request building and path info.

• Creating a Java server as part of your previous HW5-7 code

– Receives requests from the React app to calculate paths/send data.

– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.



CSE 331 Summer 2022

The Map Lines Stack

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

“Can I have the webpage?”

“Here’s some HTML and JS”

MapLines

*Note: This is not Apache Spark



CSE 331 Summer 2022

The Campus Paths Stack

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your TypeScript Code

<Map>

<button>

Other Components

“Can I have the webpage?”

“Here’s some HTML and JS”

“How do I go from CSE to CS2?”

“Here’s some JSON with 

your data.”

CampusPaths

*Note: This is not Apache Spark



CSE 331 Summer 2022

Any Questions?

• Done:

– HW9 Basic Overview

• Up Next:

– JSON

– Fetch



CSE 331 Summer 2022

JSON

• We have a whole application written in Java (Pathfinder application)

• We’re writing a whole application in JavaScript (React web application)

• Even if we get them to communicate (discussed later), we need to make sure they 
“speak the same language” since they store data very differently.

• JSON = JavaScript Object Notation

– Can convert JS Object → String, and String → JS Object

– Bonus: Strings are easy to send inside server requests/responses.



CSE 331 Summer 2022

JSON ↔ Java

public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]      

{"Purple", "Gold"};

}

Java Object JSON String

Use Gson (a library from Google) to 
convert between them.

– Tricky (but possible) to go from JSON String 
to Java Object, but we don’t need that for 
this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo();
String json = gson.toJson(sInfo);

{"name":"U of 

Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs 

II","isRainy":true,"website":"www.uw.e

du","colors":["Purple","Gold"]}



CSE 331 Summer 2022

JSON ↔ JS

let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of 

Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs 

II","isRainy":true,"website":"www.uw.e

du","colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)

• This means: if the server sent back a JSON String, it’d be easy to use the 
data inside of it – just turn it into a JS Object and read its fields



CSE 331 Summer 2022

JSON – Key Ideas

• Use Gson to turn Java objects containing the data into JSON before we send it back.

– The Java objects don’t have to be simple, like in the example, Gson can handle 
complicated structures.

• We can then turn the JSON string into a Javascript object so we can use the data 
(fetch can help us with that).



CSE 331 Summer 2022

Any Questions?

• Done:

– HW9 Basic Overview

– JSON

• Up Next:

– Fetch



CSE 331 Summer 2022

What is a Request?

• Recall from lecture:

– When you type a URL into your browser, it makes a GET request to that URL, the 
response to that request is the website itself (HTML, JS, etc..).

• A GET request says “Hey server, can I get some info about _____?”

– We’re going to make a request from inside Javascript to ask for data about paths on 
campus.

– There are other kinds of requests, but we’re just using GET. (It’s the default for 
fetch).

• Each “place” that a request can be sent is called an “endpoint.”

– Your Java server will provide multiple endpoints – one for each kind of request that 
your React app might want to make.

• Find a path, get building info, etc...



CSE 331 Summer 2022

Forming a Request

• Basic request with no extra data: "http://localhost:4567/getSomeData"

– A request to the "/getSomeData" endpoint in the server at 
"localhost:4567"

– "localhost" just means “on this same computer”

– ":4567" specifies a port number – every computer has multiple ports so 
multiple things can be running at a given time.

• Sending extra information in a request is done with a query string:

– Add a "?", then a list of "key=value" pairs. Each pair is separated by "&".

– Query string might look like: "?start=CSE&end=KNE"

• Complete request looks like: 

http://localhost:4567/findPath?start=CSE&end=KNE

• Sends a “/findPath” request to the server at “localhost:4567”, and includes two 
pieces of extra information, named “start” and “end”.

Server Address: http://localhost:4567



CSE 331 Summer 2022

Forming a Request

http://localhost:4567/getSomeData

http://localhost:4567/findPath?start=CSE&end=KNE

http://washington.edu/about.....

Hostname Port* Endpoint

Query Params*

*Port and query params are technically optional

Server Address: http://localhost:4567



CSE 331 Summer 2022

Servicing Requests

Recall from lecture:

– We need some way to respond to these requests

– This is what we use our SparkServer for!

– For each “endpoint” we want, we need to define a route:

Spark.get("/hello-world", new Route() {

@Override

public Object handle(Request request, Response response) 

throws Exception {

// we need to return our response

return "Hello, Spark!";

}

});



CSE 331 Summer 2022

Requests and Spark Server Demo



CSE 331 Summer 2022

Running the Section Demo

• Like last time, download and unzip the files from the website.

• New > Project from Existing Sources…

– Choose the build.gradle file 
inside of the sec09-demo directory.



CSE 331 Summer 2022

Running the Section Demo

• Get the installation out of the way since it takes a while (have this install in the 
background while you check out the Spark demo!)

• In the IntelliJ terminal:

– cd src/main/react

– npm install

• Success! (Again, these warnings are expected and normal.)



CSE 331 Summer 2022

Starting up the Spark Server

• Start up the Spark Server by running the runSpark Gradle task.

• Alternatively, run the main method of
src/main/java/sparkDemo/SparkServer.java

Compile error? Make sure you’re using Java 11!

File > Project Structure > Project

Check that the SDK is correct!



CSE 331 Summer 2022

Starting up the Spark Server

• Your server is now running on http://localhost:4567

• These are not errors – the server just outputs info in red text.

• Let’s try sending a request to the server…

– Visit http://localhost:4567 in a browser



CSE 331 Summer 2022

Starting up the Spark Server

• We got a 404 Not Found Page.
Why is this?

• INFO spark.http.matching.MatcherFilter - The requested route [/] has not 
been mapped in Spark for Accept

• Our server doesn’t have an endpoint called “/”

• But our server does have other endpoints. Let’s examine the code…

– Open up src/main/java/sparkDemo/SparkServer.java



CSE 331 Summer 2022

Example 1:

Hello, World

Spark.get("/hello-world", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

// As a first example, let's just return

// a static string.

return "Hello, Spark!";

}

});



CSE 331 Summer 2022

Example 2:

Create Your Own Route!

• Create your own endpoint!

Spark.get("/your-endpoint-here", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

return "Your message here!";

}

});

• When you’re done, you’ll need to restart the server. Use the stop button and re-run the 

runSpark Gradle task.

– Visit your newly-created endpoint!



CSE 331 Summer 2022

Example 3:

Query Parameters

Spark.get("/hello-someone", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

String personName = request.queryParams("person");

return "Hello, " + personName + "!";

}

});



CSE 331 Summer 2022

Example 4:

Parameter Error Handling

Spark.get("/hello-someone-with-error", new Route() {

...    

String personName = request.queryParams("person");

if (personName == null) { Spark.halt(400); }

return "Hello, " + personName + "!";

}

});



CSE 331 Summer 2022

Example 5:

Sending Back a Simple Java Object

Spark.get("/range", new Route() {

...

List<Integer> range = new ArrayList<>();

for (int i = start; i <= end; i++) {

range.add(i);

}

Gson gson = new Gson();

String jsonResponse = gson.toJson(range);

return jsonResponse;

}

});



CSE 331 Summer 2022

Example 5:

Sending Back a Simple Java Object

Tip: Use the network tab to view requests and responses!



CSE 331 Summer 2022

Example 5:

Sending Back a Simple Java Object

• Use descriptive and informative error messages!

Spark.halt(400, "must have start and end");

• Limited freedom to
pick a status #!

– See the docs

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status


CSE 331 Summer 2022

Example 6:

Sending Back a Complex Java Object
Spark.get("/range-info", new Route() {

...

// RangeInfo is a class with fields:

// start, end, range, primes, average

RangeInfo rangeInfo = new RangeInfo(start, end);

Gson gson = new Gson();

return gson.toJson(rangeInfo);

}

});

• The network tab also shows this!



CSE 331 Summer 2022

Fetch

• Used by JS to send requests to servers to ask for info.

– alternative to XmlHttpRequest

• Uses Promises:

– Promises capture the idea of “it’ll be finished later.”

– Asking a server for a response can be slow, so Promises allow the browser to 
keep working instead of stopping to wait. 

– Getting the data out is a little more complicated.

– Java has Promises too – called CompletableFuture

• Can use async/await syntax to deal with promises.



CSE 331 Summer 2022

Sending the Request in React

• The URL you pass to fetch() can include a query string if you need to send extra 
data.

• responsePromise is a Promise object

– Once the Promise “resolves,” it’ll hold whatever is sent back from the server.

• How do we get the data out of the Promise?

– We can await the promise’s resolution.

– await tells the browser that it can pause the currently-executing function and 
go do other things. Once the promise resolves, it’ll resume where we left off.

– Prevents the browser from freezing while the request is happening (which can 
take some time to complete)

let responsePromise = fetch("http://localhost:4567/findPath?start=CSE&end=KNE");



CSE 331 Summer 2022

Getting Useful Data

async sendRequest() {
let responsePromise = fetch("...");
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is 
pause-able”

Will eventually 
resolve to an actual 
JS object based on 
the JSON string.

Once we have the 
data, store it in a 
useful place.



CSE 331 Summer 2022

Error Checking

async sendRequest() {
try {

let response = await fetch("...");
if (!response.ok) {

alert("Error message!");
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert("Error message!");

}
}

Every response has a 
‘status code’ (404 = Not 
Found). This checks for
200-299 = OK

On a complete failure (e.g.
server isn’t running) an 
error is thrown.

Make sure you create 
informative and helpful
error messages!



CSE 331 Summer 2022

Fetch Demo



CSE 331 Summer 2022

Running the Fetch Demo

• Make sure your Spark Server is running (runSpark Gradle task)

• In the IntelliJ terminal:

– Make sure you’re in src/main/react

– npm start

• A browser window should open up automatically

– Issues: have you run npm install yet?

– If so, run npm audit fix --force then run npm start



CSE 331 Summer 2022

Example 7:

Fetch

App.tsx:

constructor(props: {}) {

super(props);

this.state = { requestResult: "NO REQUEST RESULT" };

}

render() {

return (

<div className="App">

<p>{this.state.requestResult}</p>

<button onClick={this.makeRequestLong}>

Make a Request

</button>

</div>

);

}



CSE 331 Summer 2022

Example 7:

Fetch
makeRequestLong = async () => {

try {

let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React");

let response = await responsePromise;

if (!response.ok) {

alert("Error! Expected: 200, Was: " + response.status);

return;

}

let textPromise = response.text();

let text = await textPromise;

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};



CSE 331 Summer 2022

Example 7:

Fetch
makeRequestLong = async () => {

try {

let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React");

let response = await responsePromise;

...

};

The type of this is 
Promise<Response>

await “resolves” a promise
(waits for the promise to be fulfilled)

The type of this is Response

Do NOT use https



CSE 331 Summer 2022

Example 7:

Fetch
makeRequestLong = async () => {

...

if (!response.ok) {

alert("Error! Expected: 200, Was: " + response.status);

return;

}

...

};

Stop the execution of this function if the response is bad.
Response objects have other fields too, such as:
• .headers

• .statusText

• .url

Check out the docs for more info on Response objects!

https://developer.mozilla.org/en-US/docs/Web/API/Response


CSE 331 Summer 2022

Example 7:

Fetch
makeRequestLong = async () => {

...

let textPromise = response.text();

let text = await textPromise;

...

};

This endpoint returns a string 
(text). If your endpoint returns 
a JSON string, use 
response.json() instead.Since we used .text(), 

the type of this is 
Promise<string>

Promise<string> 

resolves into string. 

text is of type string.



CSE 331 Summer 2022

Example 7:

Fetch
makeRequestLong = async () => {

...

let text = await textPromise;

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};

We update the state with the 
response from the server!

Handle errors gracefully and inform the user of an error. Most 
common sources of errors:
• Fetch URL is wrong
• Server is offline
• Using .json() if the response doesn’t contain valid JSON



CSE 331 Summer 2022

Example 7:

Fetch

Recap:

• When we click the button, its onClick listener will call the callback 
function we passed in: this.makeRequestLong

• this.makeRequestLong sends a fetch request to our Spark Server: 
http://localhost:4567/hello-someone?person=React

• this.makeRequestLong receives a response from the server and 
updates App’s state

• React notices the state update 
and queues a re-render

• The <p> element is re-rendered
with the updated state!

Queue a re-render!



CSE 331 Summer 2022

Example 8:

Fetch, but more compact
makeRequest = async () => {

try {

let response = await fetch("...");

if (!response.ok) {

alert("...");

return;

}

let text = await response.text();

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};

Reduced the number of temporary variables!



CSE 331 Summer 2022

Things to Know

• Can​ only use the await keyword inside a function declared with the async
keyword.

– async keyword means that a function can be “paused” while await-ing

• async functions automatically return a Promise that (will eventually) contain(s) 
their return value. 

– This means that if you need a return value from the function you declared as 
async, you’ll need to await the function call.

– But that means that the caller also needs to be async.

– Therefore: best to not have useful return values from async functions 

– Instead of returning, call setState to store the result and trigger an update.



CSE 331 Summer 2022

More Things to Know

• Error checking is important.

– If you forget, the error most likely will disappear without actually causing your 
program to explode.

– This is BAD! Silent errors can cause tricky bugs.

– Happens because errors don’t bubble outside of promises, and the async
function you’re inside is effectively “inside” a promise.

– Means that if you don’t catch an exception, it’ll just disappear as soon as your 
function ends.



CSE 331 Summer 2022

More More Things to Know

• The return value of await response.json() will be any

– As we know, this is dangerous! (No TypeScript checks)

• To solve, we create an interface describing what the server will respond with (e.g.
a Path) and cast the value to that type:

interface Path { ... }

const parsed: Path = await response.json() as Path;

• Note: This does not check that the value actually has this type

– If the server sends back something different, could crash later

– A true solution would check the object before casting

• Can get pretty complicated – not required for HW9

• If you're curious – libraries like io-ts can help with this



CSE 331 Summer 2022

Any Questions?

• Done:

– HW9 Overview

– JSON

– Fetch



CSE 331 Summer 2022

Before next lecture...

1. Do HW8 by tonight! 

– No written portion

– Coding portion (push and tag on GitLab)

2. Feel free to add additional JUnit tests or script tests!


