CSE 331

Software Design & Implementation
Section: HW9, JSON, and Fetch

CSE 331 Summer 2022

Reminders

« React is new and very different! Start early and ask questions

Upcoming Deadlines

« HWS due 11pm Thursday (8/11)

CSE 331 Summer 2022

Last Time... Today's Agenda

« HWS8 Overview « HW9 Overview
« React Examples « JSON
e Using Leaflet for Maps in React « Fetch

CSE 331 Summer 2022

Homework 9 Overview

« Creating a new web GUI using React
- Display a map and draw paths between two points on the map.
— Similar to your React app in HW8 - but you may add more!
- Send requests to your Java server (new) to request building and path info.

« Creating a Java server as part of your previous HW5-7 code
- Receives requests from the React app to calculate paths/send data.
- Not much code to write here thanks to MVC,
* Reuse your CampusMap class from HW7.

CSE 331 Summer 2022

The Map Lines Stack

MapLines

Google Chrome

http://localhost:3000

“Can | have the webpage?”

“Here’s some HTML and JS”

Your React Application

<Map>
<button>

Other Components

CSE 331 Summer 2022

Dev Server/Compiler
“localhost:3000”
Started with npm start

Your TypeScript Code

*Note: This is not Apache Spark

The Campus Paths Stack

CampusPaths

Google Chrome

http://localhost:3000

“Can | have the webpage?”

“Here’s some HTML and JS”

Your React Application

<Map>

“‘How do | go from CSE to CS27”
<button>

Other Components

“Here’s some JSON with
your data.”

CSE 331 Summer 2022

Dev Server/Compiler
“localhost:3000”
Started with npm start

Your TypeScript Code

Spark Java Server*
“localhost:4567”
Started with runSpark gradle task

SparkServer
CampusMap

Other pathfinder Code

*Note: This is not Apache Spark

Any Questions?

« Done;
- HW9 Basic Overview

* Up Next:

- JSON
- Fetch

CSE 331 Summer 2022

JSON

« We have a whole application written in Java (Pathfinder application)
« We're writing a whole application in JavaScript (React web application)

« Even if we get them to communicate (discussed later), we need to make sure they
“speak the same language” since they store data very differently.

» JSON = JavaScript Object Notation

- Can convert JS Object — String, and String —]S Object
- Bonus: Strings are easy to send inside server requests/responses.

CSE 331 Summer 2022

JSON < Java

Java Object

JSON String

public class SchoolInfo {

String name = "U of Washington";

String location = "Seattle";

int founded = 1861;

String mascot = "Dubs II";

boolean isRainy = true;

String website = "www.uw.edu";

String[] colors = new String][]
{"Purple", "Gold"};

}

{"name":"U of

l Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs
II","iIsRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}

Use Gson (a library from Google) to
convert between them.

- Tricky (but possible) to go from JSON String
to Java Object, but we don't need that for

this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo();

String json = gson.toJson(sInfo);

CSE 331 Summer 2022

JSON « |S

Javascript Object JSON String

let schoollInfo = {

name: "U of Washington",
location: "Seattle", {"name":"U of

emeeely el | I Washington","location":"Seattle","foun

t: “D b II") n n m,n
masco , HoS ded":1861,"mascot":"Dubs
1sRainy: true,

T |I","I'if.Rainyl'":true,"we"b"site":':vaw.uw.e
colors: ["Purple","Gold"] du","colors":["Purple","Gold"]}

» (Can convert between the two easily (we'll see how later)

« This means: if the server sent back a JSON String, it'd be easy to use the
data inside of it - just turn it into a JS Object and read its fields

CSE 331 Summer 2022

JSON - Key ldeas

« Use Gson to turn Java objects containing the data into JSON before we send it back.

- The Java objects don’t have to be simple, like in the example, Gson can handle
complicated structures.

« We can then turn the JSON string into a Javascript object so we can use the data
(fetch can help us with that).

CSE 331 Summer 2022

Any Questions?

« Done;
- HW9 Basic Overview
- JSON

* Up Next:
- Fetch

CSE 331 Summer 2022

What is a Request?

« Recall from lecture:
- When you type a URL into your browser, it makes a GET request to that URL, the
response to that request is the website itself (HTML, JS, etc..).

« A GET request says “Hey server, can | get some info about 2"
- We're going to make a request from inside Javascript to ask for data about paths on

campus.
- There are other kinds of requests, but we're just using GET. (It's the default for

fetch).
« Each “place” that a request can be sent is called an “endpoint.”
- Your Java server will provide multiple endpoints - one for each kind of request that
your React app might want to make.

 Find a path, get building info, etc...

CSE 331 Summer 2022

FO rm I ng a Req u eSt Server Address: http://localhost:4567

Basic request with no extra data: "http://localhost:4567/getSomeData"

- Arequest to the "/getSomeData" endpoint in the server at
"localhost:4567"

- "localhost" just means “on this same computer”

- ":4567" specifies a port number - every computer has multiple ports so
multiple things can be running at a given time.

Sending extra information in a request is done with a query string:
- Add a "?", then a list of "key=value" pairs. Each pair is separated by "&".
- Query string might look like: "?start=CSE&end=KNE"

Complete request looks like:

http://localhost:4567/findPath?start=CSE&end=KNE

Sends a “/findPath” request to the server at “localhost:4567", and includes two
pieces of extra information, named “start” and “end”.

CSE 331 Summer 2022

FO rm I ng a Req u ESt Server Address: http://localhost:4567

http://washington.edu/about

http://localhost:4567/getSomeData

\ J\ J \ J
| | !

Hostname Port* Endpoint

Query Params*

A
[\

http://localhost:4567/findPath?start=CSE&end=KNE

*Port and query params are technically optional

CSE 331 Summer 2022

Servicing Requests

Recall from lecture:
- We need some way to respond to these requests
- This is what we use our SparkServer for!
- For each “endpoint” we want, we need to define a route:

Spark.get("/hello-world", new Route() ({
@Override
public Object handle (Request request, Response response)
throws Exception {
// we need to return our response
return "Hello, Spark!";

}) s

CSE 331 Summer 2022

Requests and Spark Server Demo

CSE 331 Summer 2022

Running the Section Demo

« Like last time, download and unzip the files from the website.

= :,-..-E EEf-E':tI::r E|_|i|::| F-!_HH I|::|::|5 ﬁﬂ

» Project...

Project from Existing Sources...

Project from Version Control...

sec(9-demo

gradle

« New > Project from Existing Sources... -

— Choose the build.gradle file a }-::uiln:l.gran:IIE
inside of the sec09-demo direCtOry. Il gradle.properties

gradlew

gradlew.bat
README.md

settings.gradle

CSE 331 Summer 2022

Running the Section Demo

« Get the installation out of the way since it takes a while (have this install in the
background while you check out the Spark demao!)

* In the Intelli) terminal:
- cd src/main/react

— npm install

» Success! (Again, these warnings are expected and normal.)

i vulnerabilities (2 low, 65 moderate, 46
run “npm avdit fix® to fix them, or “npm avdit” for

CSE 331 Summer 2022

Starting up the Spark Server

« Start up the Spark Server by running the runSpark Gradle task.

+ Alternatively, run the main method of
src/main/java/sparkDemo/SparkServer. java

ile error? Make sure you’re using Java 11!
Project Structure > Project
that the SDK is correct!

. i Project Structure
build setup

demo
- Project Settings
runtason

:x rumn

Project
Modules
Libraries
U Facets
: Artifacts SDK: temurin-11
=1
rumn
Platform Settings
SDKs Language level: | 11 - Local variable syntax for lambda parameters

Global Libraries

documentation

help

roblems

i Dependencies

CSE 331 Summer 2022

Starting up the Spark Server

* Your server is now running on http://localhost:4567

 These are not errors — the server just outputs info in red text.

« Let's try sending a request to the server...
— Visit http://localhost:4567 In a browser

CSE 331 Summer 2022

Starting up the Spark Server

« C (@ localhost4567

404 Not found

« We got a 404 Not Found Page.
Why is this?

» INFO spark.http.matching.MatcherFilter - The requested route [/] has not
been mapped in Spark for Accept

« Our server doesn't have an endpoint called “/"

» But our server does have other endpoints. Let's examine the code...
- Open up src/main/java/sparkDemo/SparkServer. java

CSE 331 Summer 2022

Example 1:

Hello, World

Spark.get ("/hello-world", new Route() {
@Override
public Object handle (Request request,
Response response) throws Exception ({
// As a first example, let's just return
// a static string.
return "Hello, Spark!";

})

& C @ localhost:4567 /hello-world

Hello. Spark!

CSE 331 Summer 2022

Example 2:

Create Your Own Route!

* Create your own endpoint!

Spark.get (" /your-endpoint-here", new Route () {
@Override
public Object handle (Request request,
Response response) throws Exception ({

return "Your message here!";

})

secl9-demo [runSpark] *

 When you're done, you'll need to restart the server. Use the stop button and re-run the
runSpark Gradle task.

— Visit your newly-created endpoint!

CSE 331 Summer 2022

Example 3:

Query Parameters

Spark.get("/hello-someone", new Route () {
@Override
public Object handle (Request request,
Response response) throws Exception ({
String personName = request.queryParams ('"'person") ;
return "Hello, " + personName + "!'";

}) ’ < C @ localhost:4567/hello-someone?person=Jeramy
Hello. Jeremy!
&« C @ localhost4567/hello-someone &« C @ localhost:4567/hello-someone?person=
!
Hello. null! Hello. !

CSE 331 Summer 2022

Example 4:

Parameter Error Handling

Spark.get("/hello-someone-with-error", new Route() ({

String personName = request.queryParams ("person') ;
if (personName == null) { Spark.halt(400); }
return "Hello, " + personName + "!";

&« C @ localhost:4567/hello-somecne-with-error
})
< & 0] localhost:4567/hello-someone-with-error? person=Jeremy
Hello, Jeremy! 1 L
-
< C (@ localhost:4567/hello-someone-with-error?person= . ., .
This page isn't working
Hello, !
If the problem continues, contact the site owner.
HTTP ERROR 400

CSE 331 Summer 2022

Example 5:

Sending Back a Simple Java Object

Spark.get (" /range", new Route() ({

List<Integer> range = new ArrayList<>();

for (int 1 = start; i <= end; i++) {
range.add (i) ;

}

Gson gson = new Gson() ;

String JjsonResponse = gson.toJson (range) ;

return jsonResponse;

}) s < C @® localhost:4567/range?start=18end=10

[1.2.3.4.5,6,7.8,9,10]

CSE 331 Summer 2022

Example 5:

Sending Back a Simple Java Object

Tip: Use the network tab to view requests and responses!

[w ﬂ Elements Console Recorder & Lighthouse Metwork B o 0 x
® ® ¥ Q | 0Preservelog | [Disable cache Mothrotting ¥ T | # ¥ o
Filter [Invert [Hide data URLs
All | Fetch/XHR JS C55 Img Media Font Doc WS Wasm Manifest Other [Has blocked cookies
[Blocked Requests [3rd-party requests
I 20 ms 40 ms 60 ms B0 ms 100 ms
-
Mame ¥ Headers Payload Preview FResponse Imitiator Timing Cookies
El range?start=18&end=10 *[1, 2, 3, 4, 5, 8, 7, 8, 9, 18]

ar 1

1: 2

Iy 3

It 4

4: 5

51 6

6: 7

7. 8

8: 9

q9: 1@

CSE 331 Summer 2022

Example 5:

Sending Back a Simple Java Object

« Use descriptive and informative error messages!

Spark.halt (400, "must have

* Limited freedom to
pick a status #!

- See the docs

start and end") ;

< C (@ localhost4567/range

must have start and end

[ﬂ Elements Console Recorder & Lighthouse Sources MNetwork Performance ¥
® ® Y QO [OPreservelog | [Dissble cache Nothrottling ¥ =5 | # #
Filter () Invert () Hide data URLs All | Fetch/XHR)5 (55 Img Media Font Doc
[3rd-party requests
| 10 me 20ms 30 ms 40 ms 50 ms 60 ms
—
MName ® Headers Preview Response Initiator Timing Cookis
El range ¥ General

Request URL: http://localhest:4567/range
Request Method: GET

Status Code: @ 482 Bad Request

Remote Address: [::17:4567

Referrer Policy: strict-origin-when-cross-origin

CSE 331 Summer 2022

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Example 6:

Sending Back a Complex Java Object

Spark.get("/range-info", new Route() {

// RangeInfo is a class with fields:

// start, end, range, primes, average

RangeInfo rangeInfo = new RangelInfo(start, end);
Gson gson = new Gson() ;

return gson. todson (rangeInfo) ;

})

é

C @ localhost4567/range-info?start=18&end=20

* The network tab also shows this!

X

Headers Payload Preview Response Initator Timing Cookies

1 {"start":1,"end":28,"range":[1,2,3,4,5%,6,7,8,9,10,11,12,13,14,15,15,17,18,1%,2@8],"primes":[1,2,3,5,7,1]

CSE 331 Summer 2022

Fetch

« Used by JS to send requests to servers to ask for info.
- alternative to Xm1HttpRequest

» Uses Promises:
- Promises capture the idea of “it'll be finished later.”
- Asking a server for a response can be slow, so Promises allow the browser to
keep working instead of stopping to wait.

- Getting the data out is a little more complicated.
- Java has Promises too - called CompletableFuture

» (Can use async/await syntax to deal with promises.

CSE 331 Summer 2022

Sending the Request in React

let responsePromise = fetch("http://localhost:4567/findPath?start=CSE&end=KNE");

« The URL you pass to fetch() can include a query string if you need to send extra
data.

« responsePromise iS a Promise object

— Once the Promise “resolves,” it'll hold whatever is sent back from the server.
« How do we get the data out of the Promise?

- We can await the promise’s resolution.

- await tells the browser that it can pause the currently-executing function and
go do other things. Once the promise resolves, it'll resume where we left off.

- Prevents the browser from freezing while the request is happening (which can
take some time to complete)

CSE 331 Summer 2022

Getting Useful Data

“This function is
pause-able”

Will eventually

resolve to an actual

async sendRequest() {
let responsePromise = fetch("...");
let response = await responsePromise;

JS object based on —t—p] et parsingPromise = response.json();

the JSON string.

Once we have the
data, storeitin a
useful place.

let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject

CSE 331 Summer 2022

Error Checking

Every response has a async sendRequest() {
'status code’ (404 = Not try { .
Found). This checks for let response = await fetch("...");
i _ if (!response.ok) {
200-233 = OK _———“'——" alert("Error message!");
return;
On a complete failure (e.g.)

server isn't running) an let parsed = await response.json();
& this.setState({

error is thrown. \ importantData: parsed
})s

} catch (e) {
Make Sur? you create —» alert("Error message!");
informative and helpful — }

error messages! }

CSE 331 Summer 2022

Fetch Demo

CSE 331 Summer 2022

Running the Fetch Demo

« Make sure your Spark Server is running (runSpark Gradle task)

* In the Intelli) terminal:
- Make sure you're in src/main/react

— npm start

now view sec89-demo in the browser.

On Your Network:

s not optimized.

* A browser window should open up automatically
- Issues: have you run npm install yet?
- Ifso,runnpm audit fix --forcethenrunnpm start

CSE 331 Summer 2022

Example 7:

Fetch

App. tsx:
constructor (props: {}) {

super (props) ;

this.state = { requestResult: "NO REQUEST RESULT" };

&« C @ localhost:3000 Q = % » =

NO REQUEST RESULT
render () {

return (

| Make a Request |

<div className="App'>

<p>{this.state.requestResult}</p>

<button onClick={this.makeRequestLong}>
Make a Request
</button>
</div>
) ;

CSE 331 Summer 2022

Example 7:

Fetch

makeRequestLong = async () => {

try {
let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React") ;

let response = await responsePromise;
if ('response.ok) {
alert ("Error! Expected: 200, Was: " + response.status);

return;
}
let textPromise = response.text();
let text = await textPromise;
this.setState({ requestResult: text });

} catch (e) {
alert ("There was an error contacting the server.");

console.log(e) ;

CSE 331 Summer 2022

Example 7:

Fetch

makeRequestLong = async () => {
try {
let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React") ;

The type of this is \
Promise<Response> Do NOT use https

let response = await responsePromise;
R await “resolves” a promise
(waits for the promise to be fulfilled)

The type of this is Response

CSE 331 Summer 2022

Example 7:

Fetch

makeRequestLong = async () => {

if ('response.ok) {
alert ("Error! Expected: 200, Was: " + response.status);

return;

Stop the execution of this function if the response is bad.
Response objects have other fields too, such as:

* .headers

* .statusText

 .url

Check out the docs for more info on Response objects!

CSE 331 Summer 2022

https://developer.mozilla.org/en-US/docs/Web/API/Response

Example 7:

Fetch

makeRequestLong = async () => {

let textPromise = response.textili~
This endpoint returns a string
(text). If your endpoint returns
a JSON string, use
Since we used . text (), response. json () instead.
the type of this is
Promise<string>

let text = await textPromise;

e \ Promise<string>
}; resolves into string.
text is of type string.

CSE 331 Summer 2022

Example 7:

Fetch

makeRequestLong = async () => {

let text = await textPromise;
this.setState({ requestResult: text }); ‘\\

We update the state with the
response from the server!

} catch (e) {
alert ("There was an error contacting the server.");

console.log(e) ; \

Handle errors gracefully and inform the user of an error. Most
common sources of errors:
e Fetch URL iswrong

« Server is offline
« Using .json () if the response doesn’t contain valid JSON

CSE 331 Summer 2022

Example 7:

Fetch

Recap:

When we click the button, its onClick listener will call the callback

function we passed in: this.makeRequestLong

this.makeRequestLong sends a fetch request to our Spark Server:
http://localhost:4567/hello-someone?person=React

this.makeRequestLong receives a response from the server and

updates App's state

React notices the state update
and queues a re-render

The <p> element is re-rendered
with the updated state!

Queue are-

render!

() localhost:3000

@,

Hello, React!

| Make a Request |

& W

=

CSE 331 Summer 2022

Example 8:

Fetch, but more compact

makeRequest = async () => {
try {

let response = await fetch("...");

if (!'response.ok) {
alert("...");
return;

}

let text = await response.text();

this.setState({ requestResult: text });

} catch (e) {
alert ("There was an error contacting the server.");

Reduced the number of temporary variables!

console.log(e) ;

CSE 331 Summer 2022

Things to Know

« (Canonly use the await keyword inside a function declared with the async
keyword.

- async keyword means that a function can be “paused” while await-ing

« async functions automatically return a Promise that (will eventually) contain(s)
their return value.

- This means that if you need a return value from the function you declared as
async, you'll need to await the function call.

- But that means that the caller also needs to be async.
- Therefore: best to not have useful return values from async functions
- Instead of returning, call setState to store the result and trigger an update.

CSE 331 Summer 2022

More Things to Know

* Error checking is important.

- If you forget, the error most likely will disappear without actually causing your
program to explode.

— This is BAD! Silent errors can cause tricky bugs.

- Happens because errors don't bubble outside of promises, and the async
function you're inside is effectively “inside” a promise.

- Means that if you don't catch an exception, it'll just disappear as soon as your
function ends.

CSE 331 Summer 2022

More More Things to Know

* Thereturnvalue of await response.json () will be any
- As we know, this is dangerous! (No TypeScript checks)

« To solve, we create an interface describing what the server will respond with (e.g.
a Path) and cast the value to that type:

interface Path { ... }
const parsed: Path = await response.json() as Path;

* Note: This does not check that the value actually has this type
- If the server sends back something different, could crash later
- A true solution would check the object before casting
« Can get pretty complicated - not required for HW9
» If you're curious - libraries like io-ts can help with this

CSE 331 Summer 2022

Any Questions?

Done:

- HWO9 Overview
- JSON

- Fetch

CSE 331 Summer 2022

Before next lecture...

1. Do HWS by tonight!
- No written portion
- Coding portion (push and tag on GitLab)

2. Feel free to add additional JUnit tests or script tests!

CSE 331 Summer 2022

