
CSE 331 Summer 2022

Software Design & Implementation

Section: HW6; Equality

CSE 331

CSE 331 Summer 2022

Reminders

• Even though no code, still need to pass pipeline!

• HW5 due 11pm tonight (7/21)
• Prep. Quiz: HW6 due 11pm Monday (7/25)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• HW6 Overview
• Review: Equals + Hashcode

• Modular Design
• Equals and Hashcode
• Exceptions
• Subtyping

CSE 331 Summer 2022

Refresher: Format of script tests

Each script test is expressed as text-based script foo.test

– One command per line, of the form: Command arg1 arg2 …

– Script’s output compared against foo.expected

– Precise details specified in the homework

– Match format exactly, including whitespace!

Command (in foo.test) Output (in foo.expected)

CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label from parent to child in graph

ListNodes graph graph contains: labelnode …

ListChildren graph parent the children of parent in graph are: child(labeledge)…

This is comment text … # This is comment text …

CSE 331 Summer 2022

Refresher: example.test

Create a graph

CreateGraph graph1

Add a pair of nodes

AddNode graph1 n1

AddNode graph1 n2

Add an edge

AddEdge graph1 n1 n2 e1

Print all nodes in the graph

ListNodes graph1

Print all child nodes of n1 with outgoing edge ListChildren
graph1 n1

n1 n2
e1

CSE 331 Summer 2022

Refresher: example.expected

Create a graph

created graph graph1

Add a pair of nodes

added node n1 to graph1

added node n2 to graph1

Add an edge

added edge e1 from n1 to n2 in graph1

Print all nodes in the graph

graph1 contains: n1 n2

Print all child nodes of n1 with outgoing edge the children of
n1 in graph1 are: n2(e1)

n1 n2
e1

CSE 331 Summer 2022

How the script tests work

• In HW5, you wrote script tests in the form of .test files

– As well as an .expected file for each test’s expected outcome

• The JUnit class ScriptFileTests runs all these tests

– Looks for all the .test files in the src/test/resources/testScripts folder

– Compares test output against corresponding .expected file

• ScriptFileTests needs a bridge to your graph implementation

– That’s exactly what the GraphTestDriver class is for

CSE 331 Summer 2022

Graph Test Driver

• GraphTestDriver knows how to read these test scripts

• GraphTestDriver calls a method to “do” each verb

– CreateGraph, AddNode, AddEdge …

– One method stub per script command for you to fill with calls to your graph
code

• Note: Completed test driver should sort lists before printing for ListNodes and
ListChildren

– Just to ensure predictable, deterministic output

– Your graph implementation itself should not worry about sorting

CSE 331 Summer 2022

Graph Test Driver Output

• The Graph Test Driver is a client of our graph…

– …but not the only client.

– Your graph should not be designed to be exclusively used for the
test driver.

• ListChildren in the test driver should print out: “the children of parent
in graph are: child(labeledge) …”

• This does not mean that you should have a method on your graph
called ListChildren that returns this String

– Because that isn’t useful for other clients

CSE 331 Summer 2022

Sorting with the driver

• Use the test driver appropriately!

– From before: “Completed test driver should sort lists before
printing.”

• Script test output for hw5 needs to be sorted so we can mechanically
check it.

• This means sorted output for tests does NOT mean sorted internal
storage in graph.

– If sorting behavior is needed, Graph ADT clients (including the test
driver) can sort those labels.

CSE 331 Summer 2022

In other words…

The Graph ADT in general should NOT assume that node or edge labels
are sorted or even comparable(!).

(of course they can be tested for equality with equals())

CSE 331 Summer 2022

Demo

Here’s a quick tour of the GraphTestDriver!

CSE 331 Summer 2022

Expensive checkReps

• A complicated rep. invariant can be expensive to check

– Especially iterating over internal collection(s)

– For example, examining every edge in a graph

• A slow checkRep could cause our grading scripts to time-out

– Can be really useful during testing/debugging, but

– Need to disable the really slow checks before submitting

• We have a tension between two goals:

– Thorough, possibly slow checking for development

– Essential, necessarily fast checking for production/grading

• What to do?

CSE 331 Summer 2022

Use a debug flag to tune checkRep

• Repeatedly (un)commenting sections of code is a poor solution

• Instead, use a class-level constant as a toggle

– Ex.: private static final boolean DEBUG = …;

• false for only the fast, essential checks

• true for all the slow, thorough checks

– Real-world code often has several such “debug levels”

private void checkRep() {

assert fast_checks();

if (DEBUG)

assert slow_checks();

}

CSE 331 Summer 2022

Equals and Hashcode

CSE 331 Summer 2022

The equals method (review)

• Specification mandates several properties:

– Reflexive: x.equals(x) is true

– Symmetric: x.equals(y) y.equals(x)

– Transitive: x.equals(y)  y.equals(z) x.equals(z)

– Consistent: x.equals(y) shouldn’t change, unless perhaps x or y did

– Null uniqueness: x.equals(null) is false

• Several notions of equality:

– Referential: literally the same object in memory

– Behavioral: no sequence of operations could tell apart (excluding ==)

– Observational: no sequence of observer operations could tell apart
(excluding ==)

CSE 331 Summer 2022

The hashCode method (review)

• Specification mandates several properties:

– Self-consistent: x.hashCode() shouldn’t change, unless x did

– Equality-consistent: x.equals(y) x.hashCode() == y.hashCode()

• Equal objects must have the same hash code.

– Implementations of equals and hashCode work together for this

– If you override equals, you must override hashCode as well

• Ideally a good hashCode method returns different values for unequal objects, but the
contract does not require this.

CSE 331 Summer 2022

Overriding equals and hashCode

• A subclass method overrides a superclass method, when…

– They have the exact same name

– They have the exact same argument types

• An overriding method should satisfy the overridden method’s
spec.

• Always use @override tag when overriding equals and
hashCode (or any other overridden method)

• Note: Method overloading is not the same as overriding

– Same name but distinguished by different argument types

• Keep these details in mind if you override equals and
hashCode.UW CSE 331 Spring 2022 18

CSE 331 Summer 2022

equals and hashCode worksheet

• Let’s practice…

UW CSE 331 Spring 2022 19

CSE 331 Summer 2022

Before next lecture...

1. Do HW5 by tonight!

– Written portion (submit PDF on Gradescope)

– Coding portion (push and tag on GitLab)

2. Review JUnit testing slides discussed in the last section.

