
CSE 331 Summer 2022

Software Design & Implementation

Section: Graphs; Testing; Equality

CSE 331

CSE 331 Summer 2022

Reminders

• None!

• HW4 due 11pm tonight (7/14)
• Prep. Quiz: HW5 due 11pm Tuesday (7/18)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Graphs
• HW5

• Specification tests
• JUnit tests

• Review: Specifications

• Specifications
• Abstract Data Types (ADTs)

• Representation Invariants
• Abstraction Functions

• Testing
• Testing Heuristics
• JUnit (section)

CSE 331 Summer 2022

Graphs

CSE 331 Summer 2022

Graphs

CSE 331 Summer 2022

A graph represents relationships

A graph is a set of nodes and a set of edges between them.

Nodes may be labeled.

Edges may be labeled.

Edges may have a direction.

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

CSE 331 Summer 2022

Example: Road Map

Nodes: intersections (cities) Edges: roads

Label: name/location Label: name/length

CSE 331 Summer 2022

Example: Airline Flights

Nodes: airports Edges: flights

Label: airport code Label: cost/time

CSE 331 Summer 2022

Example: CSE courses

Nodes: Courses Edges: pointer to next class

Label: Course name Label: none

CSE

142
CSE

143

CSE

311

CSE

312

CSE

331

CSE

332

CSE

421

CSE

447

CSE

446

CSE 331 Summer 2022

You’ve used graphs before!

Singly linked Lists:

Nodes: Linked list node Edges: pointer to next node

Label: integer Label: none

3 -25 0

CSE 331 Summer 2022

You’ve used graphs before!

Doubly linked Lists:

Nodes: Linked list node Edges: pointers to prev/next nodes

Label: integer Label: none

3 -25 0

CSE 331 Summer 2022

You’ve used graphs before!

Binary trees:

Nodes: Tree node Edges: pointers to children

Label: Integer Label: none

8 43

42

-3 40 98

CSE 331 Summer 2022

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source

• Incoming to destination

N.B.: We’re only dealing with directed

graphs from here on out.

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source

• Incoming to destination

Edge A is Node 1 → Node 2.

• Outgoing from Node 1

• Incoming to Node 2

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source

• Incoming to destination

Edge C is Node 2 → Node 3.

• Outgoing from Node 2

• Incoming to Node 3

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 3 has three children:

• Node 1

• Node 4

• Node 5

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Edge I

CSE 331 Summer 2022

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 2 has two children:

• Node 2

• Node 3

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 4 has two parents:

• Node 3

• Node 5

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 5 has one parent:

• Node 3

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 2 has four neighbors:

• Node 1 (parent)

• Node 2 (self-pointing)

• Node 3 (child)

• Node 4 (parent)

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 3 has four neighbors:

• Node 1 (child)

• Node 2 (parent)

• Node 4 (parent and child)

• Node 5 (child)

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence

• Might include a cycle

• Often want shortest

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 1 to Node 5:

1. Edge A : Node 1 → Node 2

2. Edge C : Node 2 → Node 3

3. Edge E : Node 3 → Node 4

4. Edge F : Node 4 → Node 3

5. Edge G : Node 3 → Node 5
Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 1 to Node 1:

1. Edge A : Node 1 → Node 2

2. Edge C : Node 2 → Node 3

3. Edge B : Node 3 → Node 1

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 1 Node 2

Edge I

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 2 to Node 2:

1. Edge I : Node 2 → Node 2

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

Node 2

CSE 331 Summer 2022

Possible graph operations

Creators

• Construct an empty graph

Observers

• Look up node(s) by label, children of, parents of, neighbors of, …

• Look up edge(s) by label, incoming to, outgoing from, …

• Iterate through all nodes

• Iterate through all edges

Mutators

• Insert/remove a node

• Insert/remove an edge

You may not want to include all of

these operations in your graph

ADT design.

More observers

• Find path(s) from one node to another

• Find all reachable nodes

• Count indegree, outdegree

CSE 331 Summer 2022

HW5: Preview

CSE 331 Summer 2022

HW5: Design before implementation

• HW5: Building an ADT for labeled, directed graphs

– Labeled: Nodes and edges have label values (Strings)

– Directed: Edges have direction

– Edges with same source and destination will have unique labels

• The exact interface of your Graph class is up to you

– So no given JUnit tests bundled with the starter code

– Reminder: Not a generic class.

• HW5 is just designing and specifying the ADT

– HW6 will be implementing it

CSE 331 Summer 2022

HW5: What’s Included

• Your submission for HW5 should include:

– Java class(es) that represent your ADT

• Each with method stubs

– Specifications for all classes and methods

– Tests for your ADT

• JUnit and Script tests (coming soon...)

• Your submission for HW5 should not include:

– Any implemented methods

– Anything private (fields, methods, classes, etc.)

• Including RI and AF

CSE 331 Summer 2022

HW5: Specifications in JavaDoc

• Write class/method specifications in proper JavaDoc comments

– See “Resources” → “Class and Method Specifications”

• You can generate nice HTML pages cleanly presenting all your JavaDoc
specifications

– Placed in “build/docs/javadoc/”

• This is a great way to verify the JavaDoc is formatted correctly

– And to review/proofread your work…

• Let’s look at the JavaDoc from HW4… (demo)

CSE 331 Summer 2022

JavaDoc Demo

• Run the “javadoc” gradle task (in the documentation folder)

• Locate build/docs/javadoc/index.html, right-click,
Open In > a browser of your choice

– Look for formatting errors or missing components!

CSE 331 Summer 2022

HW5: Testing

• The design process includes crafting a good test suite

– Script tests and JUnit tests

• Script Tests (src/test/resources/testScripts/)

– Test script files name.test with corresponding name.expected

– Validate behavior intrinsic to high-level concept (abstract meaning)

– Tested properties should be expected of any solution to HW5

• JUnit Tests (src/test/java/graph/junitTests/)

– JUnit test classes

– Validate behavior that can't be tested with script tests.

• If you can validate a behavior using either test type, use a script test!

CSE 331 Summer 2022

HW5: Script Tests

Each script test is expressed as text-based script foo.test

– One command per line, of the form: Command arg1 arg2 …

– Script’s output compared against foo.expected

– Precise details specified in the homework

– Match format exactly, including whitespace!

Command (in foo.test) Output (in foo.expected)

CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label from parent to child in graph

ListNodes graph graph contains: labelnode…

ListChildren graph parent the children of parent in graph are: child(labeledge)…

This is comment text … # This is comment text …

CSE 331 Summer 2022

HW5: example.test

Create a graph

CreateGraph graph1

Add a pair of nodes

AddNode graph1 n1

AddNode graph1 n2

Add an edge

AddEdge graph1 n1 n2 e1

Print all nodes in the graph

ListNodes graph1

Print all child nodes of n1 with outgoing edge ListChildren
graph1 n1

n1 n2
e1

CSE 331 Summer 2022

HW5: example.expected

Create a graph

created graph graph1

Add a pair of nodes

added node n1 to graph1

added node n2 to graph1

Add an edge

added edge e1 from n1 to n2 in graph1

Print all nodes in the graph

graph1 contains: n1 n2

Print all child nodes of n1 with outgoing edge the children of
n1 in graph1 are: n2(e1)

n1 n2
e1

CSE 331 Summer 2022

HW5: Why Script Tests?

• Everyone’s implementation could (will!) be different, so we (staff) cannot write JUnit
tests for everyone to use or to use for checking everyone’s code.

• We still need a way to test that you specify and implement the proper behavior, so
we use script tests that work regardless of the implementation.

• They test what the methods are doing, they don’t care how the methods are doing
it.

CSE 331 Summer 2022

HW5: Creating a script test

1. Write test steps as script commands in a file foo.test

2. Write expected (“correct”) output in a file foo.expected

– …taking care to match the output format exactly

3. Place both files under src/test/resources/testScripts/

4. Run all such tests via the Gradle task scriptTests

– After class implemented and GraphTestDriver stubs filled

CSE 331 Summer 2022

HW5: Test Commands vs Methods

• Your graph should not have the exact same interface as the script test

commands

– e.g. you should not have a method called AddNode() that adds a node

to the graph and prints out/returns the string “added node n1 to graph1”

– This wouldn’t make much sense for other graph clients!

• But you will need the ability to add a node!

• Later, we will need some way to map script test commands (AddNode

graph1 n1) to some Java code that uses the methods of your graph class

– This is part of HW6; do not worry about for now

CSE 331 Summer 2022

HW5: Script tests vs. JUnit Tests

• Script tests will not cover every case for your graph:

– What if you have additional methods that can’t be tested by our script

test commands?

– What about “bad” input for your graph?

– What happens when you try to add the same node twice?

– …

• We need some way to test cases that cannot be covered by our script tests

• For this, we use JUnit tests.

CSE 331 Summer 2022

HW5: Creating JUnit tests

1. Create JUnit test class in src/test/java/graph/junitTests/

2. Write a test method for each unit test

3. Run all such tests via the Gradle task junitTests

import org.junit.*;

import static org.junit.Assert.*;

/** Document class... */

public class FooTests {

/** Document method... */

@Test

public void testBar() { ... /* JUnit assertions */ }

}

CSE 331 Summer 2022

HW5: Creating JUnit tests

• Note: Your JUnit tests will fail in HW5, because you have not implemented the
actual methods yet

– The same goes for your script tests

• You will get them passing in HW6

CSE 331 Summer 2022

Specifications

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount

C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) {

balance -= amount;

}

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount

C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) {

if (balance >= amount) balance-=amount;

}

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount

C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) {

if (amount < 0) throw new IllegalArgumentException();

balance -= amount;

}

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. @effects decreases balance by amount

B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount

C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) throws InsufficientFundsException {

if (balance < amount) throw new InsufficientFundsException();

balance -= amount;

}

CSE 331 Summer 2022

Testing

Consider the BankAccount class again. What are some good test cases?

public class BankAccount {

/** @return current balance of account */

public void balance() { … }

/**

* @param amount to withdraw

* @requires amount >= 0

* @throws InsufficientFundsException

* if balance < amount

* @effects decreases balance by amount

*/

public void withdraw(int amount) { … }

}

Specification test heuristic:
• amount <= balance
• amount > balance

Boundary test heuristic:
• amount = balance
• amount > balance

Others?

Should we test amount < 0?

CSE 331 Summer 2022

Before next lecture...

1. Do HW4 by tonight! (reminder: deadline is 11pm)

– Written portion (submit PDF on Gradescope)

– Coding portion (push and tag on GitLab)

2. Review JUnit testing slides discussed in the last section.

