
CSE 331 Summer 2022

Software Design & Implementation

Section: Java Tools; Integers

CSE 331

CSE 331 Summer 2022

Reminders

• HW2 setup is important! See Panopto recordings on Canvas

• HW2 due 11pm tonight (6/30)
• Prep. Quiz: HW3 due 11pm Tuesday (7/05)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Java Tools
• Demo: Setup
• Integers and Bases

• Specifications
• Abstract Data Types (ADTs)

CSE 331 Summer 2022

HW2 Overview

• HW2 has a few different pieces—make sure to do them all!

• Written portion (submit on Gradescope)

• Reasoning with loops

• Coding portion (submit with GitLab tag)

• Setting up repo, simple Java code

• Looking at JUnit tests

• Debugging code

• Implementing code based on an invariant

The written portion can be done before you setup the software.

CSE 331 Summer 2022

Course resources

• We can’t cover everything in an hour

• Read documentation: cs.uw.edu/331 > “Resources” tab

− “Project Software Setup”

− “Editing, Compiling, Running, and Testing Java Programs”

− “Version Control (Git) Reference”

− “Assignment Submission”

• The resources page is a treasure trove of helpful information!

https://cs.uw.edu/331/
https://cs.uw.edu/331/tools/software-setup.html
https://cs.uw.edu/331/tools/editing-compiling.html
https://cs.uw.edu/331/tools/version-control.html
https://cs.uw.edu/331/tools/turnin.html

CSE 331 Summer 2022

Software You Need

• Java 11

− adoptium.net/temurin/archive

− Choose “OpenJDK 11” and install jdk-11.0.14.1+1 with the JDK installer for your OS

− Windows: Select ”Add to PATH” and “Fix Registry” during install

• IntelliJ

− jetbrains.com/idea

− Recommended: Ultimate version

• Comes in handy later in the course

• Free for students, see course website for link to license

− Install the latest version

• Git

− git-scm.com

− (Might be slightly newer version than the XCode command line tools on macOS if you
have those installed)

− Comes with Git Bash on Windows – important!

https://adoptium.net/temurin/archive/
https://www.jetbrains.com/idea/
https://git-scm.com/downloads

CSE 331 Summer 2022

Warning: You must use JDK 11+

• Must use JDK version 11 or later

− Be sure that’s what you have installed!

− You can use a later version, but it must work on JDK 11

− Download links in Resources webpage

− Use the Adoptium installers (only)

• An out-of-date JDK can lead to very confusing bugs

− No fun for either of us!

CSE 331 Summer 2022

IntelliJ

• The officially supported IDE/editor for this course

− Full setup instructions in “Project Software Setup” handout

• A modern IDE, commonly used in industry

− Get the “Ultimate” version – free license for education use

• IDE = “Integrated Development Environment”

− Auto completion

− Version-control (git) integration

− Debugger integration

− …and an assortment of other fun features

• Necessary functionality covered in course documentation

− “Editing, Compiling, Running, and Testing Java Programs”

CSE 331 Summer 2022

Version control

• Also called source control, revision control

• System to track changes in a project codebase

− Unit of change ~ lines inserted/deleted across some files

• Essential for managing software projects

− Maintain a history of code changes

− Revert to an older project state

− Merge changes from multiple sources

• We’ll use git and GitLab in this course, but alternatives exist

− Subversion, Mercurial, CVS

− Email, dropbox, thumbdrives (don’t even think of doing this!)

CSE 331 Summer 2022

Version control concepts

• A repository (“repo”) stores a project’s entire codebase

− Stored in multiple places and synchronized over the internet

− Tracks the files themselves and changes to them over time

• Each developer clones her own working copy of the repo

− Makes a local copy of the codebase, on her laptop/computer

− She modifies these files directly, with her IDE or text editor

• Each developer commits changes to her working copy

− Saves “a commit” to version control history

− Affects only the local working copy

− Must synchronize with remote repo to share commits each way

CSE 331 Summer 2022

Essential git concepts

• commit

− Saves (a subset of) the changes to the local repository

− Has a brief message summarizing changes

• push

− Sends local commits to the repository (on GitLab)

− Allows other computers to then “pull” those
commits/changes, see below.

• pull

− Synchronizes working copy to match the remote repository

− clone = the first pull, also sets up the repository for the
first time

CSE 331 Summer 2022

Diagram of git usage

GitLab

Course Staff

Grading
New Assignments

Staff Tests

Starter Code

push

pull

HW Solutions

Working
Copy

commit

Student

Working on
Assignments

“remote”
Backs Up Code

Sharing Between Computers

Working
Copypull

push

commit

CSE 331 Summer 2022

Your GitLab repository

• We will push starter code to your repo for each homework

− After HW2, you’ll get it by pulling

• Commit and push your code as you do the assignment

− Recommended process: edit, test, pull, commit, push

• Submit homework N by creating a tag “hwN-final”

− Check that you’ve committed and pushed all your work before you tag!

− Do not attach a message with the tag

− Example: “hw2-final” for HW2

• Without the right tag, your homework might not be graded!

CSE 331 Summer 2022

Example commit history

time

A.java

B.java

A.java

B.java

A.java

CSE 331 Summer 2022

Gradle: what is it

• Gradle is a tool for build automation

− Simplifies compiling, running, and testing a software project

− No need to install: included in the starter code!

• Configured by the file build.gradle (and others) in your repo

− You shouldn’t modify this (can interfere with grading)!

− Ask the course staff for help if it got messed up accidentally.

• IntelliJ has built-in support to work with Gradle

• Gradle is how you run/validate your code on attu

CSE 331 Summer 2022

Gradle: how to use it

• You can use Gradle at the command line or in IntelliJ (recommended)

− Every homework assignment has a “name” – HW3 is “hw-setup”

HW Name

Tasks

IntelliJ
Right
Sidebar• Double-click tasks to run

them.
• Make sure you’re in the

right assignment’s task
list, each one has its own
tasks.

IntelliJ Gradle Panel

CSE 331 Summer 2022

Let’s Try It!

Get your computers out and start up

Terminal (macOS) or Git Bash (Windows)

CSE 331 Summer 2022

Getting Connected to GitLab

− Generate an RSA key pair:

ssh-keygen -o -t rsa -b 4096 -C "your@email.com"

• The (-C) comment can be any string, make it something you’ll recognize.

• Press enter when asked for a file name (use default)

• No passphrase

• You’ll be told: “Your public key has been saved in (…)”

− Copy the generated public key (use the file name of the public key from
above, if different)
cat ~/.ssh/id_rsa.pub | clip (Windows)

cat ~/.ssh/id_rsa.pub (macOS/linux)

− macOS/linux: Select and copy the output of running the cat command

CSE 331 Summer 2022

Getting Connected to GitLab (2)

− Paste that into your GitLab account, under “Preferences” > “SSH Key”

• Sign in at: gitlab.cs.washington.edu

− In Terminal/Git Bash, type the following to check that you’re set up:

• ssh -T git@gitlab.cs.washington.edu

− Getting “The authenticity of host (…) can’t be established”?

• Type yes – only a one-time thing, the GitLab server is just unfamiliar to
your computer.

− Should get a welcome message back!

CSE 331 Summer 2022

Cloning Your Repo

• In GitLab, open your project page and get the SSH clone URL

gitlab.cs.washington.edu/cse331-22su-students/cse331-22su-NETID

• Blue “Clone” button in top right: copy the “Clone with SSH” URL

• Open IntelliJ

− You don’t need any plugins or launcher scripts, skip those steps

• Choose “Get from VCS”

• Choose 'Git', paste the clone link from earlier in 'URL', and choose a place
on your computer in 'Directory' where you want to keep your 331 work.

• Click Clone

CSE 331 Summer 2022

Importing Into IntelliJ

• Need to set up project SDK: Select Java 11

− File > Project Structure > Project

• Missing?

− Click New > JDK, IntelliJ should auto-find your Java 11 install

− Can’t find it? Check your Java installation and ask for help.

CSE 331 Summer 2022

Importing Into IntelliJ (2)

• Also, need to check some Gradle settings

• IntelliJ IDEA > Preferences (macOS), File > Settings (Windows/linux)

• Build, Execution Deployment > Build Tools > Gradle

Does yours look different

from this screenshot?

Make sure you are using

the latest version of

IntelliJ – Gradle support

has changed recently.

CSE 331 Summer 2022

Development Workflow Demo

1. Open the first part of the hw2 starter code:

− hw-setup/src/main/java/setup/HolaWorld.java

2. Fix the two bugs in this code: Lines 38 & 45

3. Run the code using Gradle:

− Open the Gradle panel on the right edge of IntelliJ

− Provided a runHolaWorld Gradle task under the “homework” group

− cse331 > hw-setup > Tasks > homework > runHolaWorld

4. Double-click to run the task: see the output at the bottom!

− Gradle automatically compiles your code and then runs it.

CSE 331 Summer 2022

Let’s try using the IntelliJ Debugger to examine our code.

1. Set up a breakpoint on line 37 by clicking in margin.

2. Run the code with “Debug”. Look at the program state:

Step Over to move to line 37. This executes the current line.

Step Into the getGreeting() method. This enters a method called on the current line to debug.

Resume Program will run to the next breakpoint (or in our case, until the program finishes).

Development Workflow Demo (2)

CSE 331 Summer 2022

Development Workflow Demo (3)

We’ve finished part 4 of the assignment (!) – let’s commit this code to save it.

1. “pull” to make sure we have any updates that happened while we were editing:

− Git > Pull (use the default options)

2. “commit” the changes to save them to our local copy of the repository:

− Git > Commit

− Check the boxes for the files you want to include in the commit (usually all files)

− Uncheck everything under “Before Commit” (just extra IntelliJ warnings, you can keep
them but it adds extra steps to the commit). You may need to click the settings wheel
in the bottom right of the commit window to find the "Before Commit" section

− Enter a short (< 25 words), helpful description of the changes in “Commit Message”

3. ”push” the changes to tell GitLab about the new commit:

− Git > Push

CSE 331 Summer 2022

Development Workflow Demo (4)

In general, only do this at the end of an assignment, but let’s see how it works with
a practice tag.

1. Create the tag with the correct name. For now, use section-demo. See
assignment specs for the tags to use for each assignment.

− Git > New Tag

− Enter a tag name. (Tags are case-sensitive.)

− DO NOT include a message. (This can make the tags difficult to move later,
if you need to.)

− Tags are automatically attached to the current commit on the remote
repository (so you need to create tags after creating and pushing the
commit you want to tag in a separate transaction).

2. “push” the changes to tell GitLab about the tag (so the staff can see it!)

− Git > Push

− Make sure “Push Tags” (bottom left) is checked. (Choose “All”)

CSE 331 Summer 2022

Development Workflow Demo (5)

GitLab Runners:

− Triggered when you push the tag

• Don’t see a runner? Make sure you have the right tag name! (Tags are case-
sensitive)

− Runs some sanity checks (build, javadoc, and your tests) to look for common errors.

− If your runner fails, you should definitely fix it, then move the tag and check the
runner again.

− Open your GitLab project online, go to CI/CD Pipelines (found in left hand options
bar)

− For section-demo, you’ll see a message and the pipeline should pass.

− For actual assignments, you’ll see it run checks on your assignment, then it’ll either
pass or fail and print an error message on failure.

− Can also tag and remove tags via GitLab GUI if it is easier.

CSE 331 Summer 2022

Development Workflow Demo (6)

Verifying your tag is on the correct commit:

• GitLab Repository: Left Sidebar > Repository > Graph

This page provides a good visual
for which commit your tags are
attached to!

Also can check out Repository >Tags
(browse the files and check that the
SHA matches the one found in
Repository > Commits)

CSE 331 Summer 2022

HW3

In HW3, you will be writing methods in the Natural class

Let’s look at the specification:

/**

* Represents an immutable, non-negative integer value

* along with a base in which to print its digits, which we

* can think of as a pair (base, value).

* For example, (2, 5) represents the integer 5 (in decimal),

* but it will show its digits as 101 (in binary) when

* printed.

*

* We require that the base is at least 2 and at most 36 for

* simplicity.

*/

public class Natural { … }

CSE 331 Summer 2022

Different Base Examples

Let’s take the value 10. We can use
the constructor:

public Natural(int base,

int value){…}

new Natural(10, 10) => “10”

new Natural(2, 10) => “1010”

new Natural(3, 10) => “101”

new Natural(4, 10) => “22”

Convert 80 (base 10) to base 6:

- Largest power of 6 that fits: 6^2 = 36
- 36 fits 2 times (36 x 2 = 72), so first digit is 2.
- Remainder 80 – 72 = 8

- Largest power of 6 that fits: 6^1 = 6
- 6 fits 1 time (6 x 1 = 6), so second digit is 1.
- Remainder 8 – 6 = 2

- Largest power of 6 that fits: 6 ^ 0 = 1
- 1 fits 2 times (1 x 2 = 2), so third digit is 2.
- Remainder 2 – 2 = 0, we are done

= 212 (base 6)

CSE 331 Summer 2022

Natural Fields

Now, let’s look at the fields, RI, and AF:
// Shorthand: b = this.base, D = this.digits, and

// n = this.digits.length

//

// RI: 2 <= b <= 36 and D != null and n >= 1 and

// if n > 1, then D[n-1] != 0 (no leading zeros) and

// for i = 0 .. n-1, we have 0 <= D[i] < b

//

// AF(this) = (b, D[0] + D[1] b + D[2] b^2 + ... +

// D[n-1] b^{n-1})

private final int base;

private final int[] digits;

Least significant digits come first

in the array

new Natural(2, 10) => [0, 1, 0, 1] => “1010”

CSE 331 Summer 2022

leftShift()

Now let’s take a look at the left shift method:
/**

* Produces a number whose digits, in this base, are the result of taking the

* digits of this number and shifting them to the left m positions, writing

* zeros in the now empty positions.

* @return (this.base, this.value * this.base^m)

*/

public Natural leftShift(int m) { … }

How do we multiply something by 10 in base-10? Add a zero

How do we multiply something by 2 in binary? Add a zero

What’s the pattern? How can we do this in our code?

How do we multiply something by 100 (10^2) in decimal? Add two zeroes

CSE 331 Summer 2022

leftShift()

Now let’s take a look at the left shift code:

public Natural leftShift(int m) {

int[] digits = new int[this.digits.length + m];

System.arraycopy(this.digits, 0, digits, m, this.digits.length);

return new Natural(this.base, digits);

}

new Natural(10, 36) => [6,3] => leftShift(2)

=> ?

CSE 331 Summer 2022

leftShift()

Now let’s take a look at the left shift code:

public Natural leftShift(int m) {

int[] digits = new int[this.digits.length + m];

System.arraycopy(this.digits, 0, digits, m, this.digits.length);

return new Natural(this.base, digits);

}

new Natural(10, 36) => [6,3] => leftShift(2)

=> [0,0,6,3] = (10,3600)

CSE 331 Summer 2022

leftShift()

Now let’s take a look at the left shift code:

public Natural leftShift(int m) {

int[] digits = new int[this.digits.length + m];

System.arraycopy(this.digits, 0, digits, m, this.digits.length);

return new Natural(this.base, digits);

}

new Natural(10, 36) => [6,3] => leftShift(2)

=> [0,0,6,3] = (10,3600)

new Natural(2, 10) => [0,1,0,1] => leftShift(3)

=> ?

CSE 331 Summer 2022

leftShift()

Now let’s take a look at the left shift code:

public Natural leftShift(int m) {

int[] digits = new int[this.digits.length + m];

System.arraycopy(this.digits, 0, digits, m, this.digits.length);

return new Natural(this.base, digits);

}

new Natural(10, 36) => [6,3] => leftShift(2)

=> [0,0,6,3] = (10,3600)

new Natural(2, 10) => [0,1,0,1] => leftShift(3)

=> [0,0,0,0,1,0,1] = (2,80)

Does this make sense?

CSE 331 Summer 2022

Before next lecture...

1. Do HW2 tonight! (reminder: deadline is 11pm)

– Written portion (submit PDF on Gradescope)

– Coding portion (push and tag on GitLab)

2. Read documentation: cs.uw.edu/331 > “Resources” tab

− “Project Software Setup”

− “Editing, Compiling, Running, and Testing Java Programs”

− “Version Control (Git) Reference”

− “Assignment Submission”

3. Read getValue() proof in slides (recommended)

https://cs.uw.edu/331/
https://cs.uw.edu/331/tools/software-setup.html
https://cs.uw.edu/331/tools/editing-compiling.html
https://cs.uw.edu/331/tools/version-control.html
https://cs.uw.edu/331/tools/turnin.html

CSE 331 Summer 2022

getValue()

public int getValue() {

int i = this.digits.length - 1;

int j = 0;

int val = this.digits[i];

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

j = j + 1;

i = i - 1;

val = val * this.base + this.digits[i];

}

// Post: val = D[0] + D[1] b + D[2] b^2 + ... + D[n-1] b^{n-1}

return val;

} What is this method doing?

CSE 331 Summer 2022

Proving getValue()

Let’s first prove that the invariant is established before the loop:

public int getValue() {

{{ RI, which includes n >= 1 }}

int i = this.digits.length - 1;

{{ ? }}

int j = 0;

int val = this.digits[i];

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

…

}

CSE 331 Summer 2022

Proving getValue()

Let’s first prove that the invariant is established before the loop:

public int getValue() {

{{ RI, which includes n >= 1 }}

int i = this.digits.length - 1;

{{ n >= 1 and i = n – 1 }}

int j = 0;

{{ ? }}

int val = this.digits[i];

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

…

}

CSE 331 Summer 2022

Proving getValue()

Let’s first prove that the invariant is established before the loop:

public int getValue() {

{{ RI, which includes n >= 1 }}

int i = this.digits.length - 1;

{{ n >= 1 and i = n – 1 }}

int j = 0;

{{ n >= 1 and i = n – 1 and j = 0}}

int val = this.digits[i];

{{ ? }}

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

…

}

CSE 331 Summer 2022

Proving getValue()

Let’s first prove that the invariant is established before the loop:

public int getValue() {

{{ RI, which includes n >= 1 }}

int i = this.digits.length - 1;

{{ n >= 1 and i = n – 1 }}

int j = 0;

{{ n >= 1 and i = n – 1 and j = 0}}

int val = this.digits[i];

{{ n >= 1 and i = n – 1 and j = 0 and val = D[i]}}

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

…

}

Does this imply the invariant?

CSE 331 Summer 2022

Proving getValue()

Let’s prove the part after the loop:

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

…

}

{{ ? }}

// Post: val = D[0] + D[1] b + D[2] b^2 + ... + D[n-1] b^{n-1}

return val;

}

CSE 331 Summer 2022

Proving getValue()

Let’s prove the part after the loop:

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

…

}

{{ val = D[i] b^0 + D[i+1] b^1 + … + D[n-1] b^j and i+j = n–1

and j = n-1 }}

 {{ ? }}

// Post: val = D[0] + D[1] b + D[2] b^2 + ... + D[n-1] b^{n-1}

return val;

}

CSE 331 Summer 2022

Proving getValue()

Let’s prove the part after the loop:

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

…

}

{{ val = D[i] b^0 + D[i+1] b^1 + … + D[n-1] b^j and i+j = n–1

and j = n-1 }}

{{ val = D[0] b^0 + D[1] b^1 + … + D[n-1] b^{n-1} and i=0

and j = n-1 }}

// Post: val = D[0] + D[1] b + D[2] b^2 + ... + D[n-1] b^{n-1}

return val;

}

CSE 331 Summer 2022

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

{{ ? }}

j = j + 1;

i = i - 1;

val = val * this.base + this.digits[i];

}

…

}

Proving getValue()

Now let’s prove the loop body:

CSE 331 Summer 2022

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^j and i+j = n-1

and j != n–1 }}

j = j + 1;

{{ ? }}

i = i - 1;

val = val * this.base + this.digits[i];

}

…

}

Proving getValue()

CSE 331 Summer 2022

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^j and i+j = n-1

and j != n–1 }}

j = j + 1;

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^{j-1} and i+j-1 = n-1

and j != n }}

i = i - 1;

{{ ? }}

val = val * this.base + this.digits[i];

}

…

}

Proving getValue()

CSE 331 Summer 2022

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^j and i+j = n-1

and j != n–1 }}

j = j + 1;

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^{j-1} and i+j-1 = n-1

and j != n }}

i = i - 1;

{{ val = D[i+1]b^0 + D[i+2]b^1 + ... + D[n-1]b^{j-1} and i+j = n-1

and j != n }}

val = val * this.base + this.digits[i];

{{ ? }}

}

…

}

Proving getValue()

CSE 331 Summer 2022

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^j and i+j = n-1

and j != n–1 }}

j = j + 1;

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^{j-1} and i+j-1 = n-1

and j != n }}

i = i - 1;

{{ val = D[i+1]b^0 + D[i+2]b^1 + ... + D[n-1]b^{j-1} and i+j = n-1

and j != n }}

val = val * this.base + this.digits[i];

{{ (val – D[i])/b = D[i+1]b^0 + D[i+2]b^1 + ... + D[n-1]b^{j-1}

and i+j = n-1 and j != n }}

 {{ ? }}

}

…

}

Proving getValue()

CSE 331 Summer 2022

public int getValue() {

…

// Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and

// i + j = n - 1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^j and i+j = n-1

and j != n–1 }}

j = j + 1;

{{ val = D[i]b^0 + D[i+1]b^1 + ... + D[n-1]b^{j-1} and i+j-1 = n-1

and j != n }}

i = i - 1;

{{ val = D[i+1]b^0 + D[i+2]b^1 + ... + D[n-1]b^{j-1} and i+j = n-1

and j != n }}

val = val * this.base + this.digits[i];

{{ (val – D[i])/b = D[i+1]b^0 + D[i+2]b^1 + ... + D[n-1]b^{j-1}

and i+j = n-1 and j != n }}

 {{ val = D[i] + D[i+1]b^1 + … + D[n-1]b^j and i+j = n-1 and j != n }}

}

…

}

Proving getValue()

It’s correct!

