Reminders

- Read the welcome email
- Check your access to Ed, Gradescope, and Canvas

Upcoming Deadlines

- HW1 due 11pm tonight (6/23)
- Syllabus Quiz due 11pm tonight (6/23)
Last Time...

• Introduction to straight line reasoning

Today’s Agenda

• Introductions & Icebreakers
• Reasoning Worksheet
• New: Reasoning about conditionals
Introduction & Icebreaker

• Turn to a group of 3-5:
 • Name
 • Class standing
 • Interesting thing you’re doing this summer
 • First 300-level CSE class you took (or are taking)?
 • Least & most favorite CSE class?
 • Why?

• Introduce someone you met to the class! (first three bullet points)
Why reason about code?

• Prove that code is correct
• Understand why code is correct
• Diagnose why/how code is not correct
• Specify code behavior
Logical reasoning about code

• Determine facts that hold of program state between statements
 – “Fact” ~ assertion (logical formula over program state, informally “value(s) of some/all program variables)
 – Driven by assumption (precondition) or goal (postcondition)

• Forward reasoning
 – What facts follow from initial assumptions?
 – Go from precondition to postcondition

• Backward reasoning
 – What facts need to be true to reach a goal?
 – Go from postcondition to precondition
Hoare Logic: Validity by Reasoning

- Checking validity of \{\{P\}\} S \{\{Q\}\}
 - Valid iff, starting from any state satisfying \(P\), executing \(S\) results in a state satisfying \(Q\)

- Forward reasoning:
 - Reason from \(P\) to strongest postcondition \{\{P\}\} S \{\{R\}\}
 - Check that \(R\) implies \(Q\) (i.e., \(Q\) is weaker)

- Backward reasoning:
 - Reason from \(Q\) to get weakest precondition \{\{R\}\} S \{\{Q\}\}
 - Check that \(P\) implies \(R\) (i.e., \(P\) is stronger)
Implication (=>)

- Logic formulas with *and* (&, &&, or ∧), *or* (|, ||, or ∨) and *not* (! or ¬) have the same meaning they do in programs.

- Implication might be a bit new, but the basic idea is pretty simple. Implication p=>q is true as long as q is always true whenever p is.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p => q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Assignment Statements

• Reasoning about $x = y$;

• Forward reasoning:
 – add “$x = y$” as a new fact
 – (also rewrite any existing references to “x” to use new value)

• Backward reasoning:
 – replace all instances of “x” in the postcondition with “y”
Weaker vs. stronger

Formal definition:
• If \(P \Rightarrow Q \), then
 – \(Q \) is weaker than \(P \)
 – \(P \) is stronger than \(Q \)

Intuitive definition:
• “Weak” means unrestrictive; a weaker assertion has a larger set of possible program states (e.g., \(x \neq 0 \))
• “Strong” means restrictive; a stronger assertion has a smaller set of possible program states (e.g., \(x = 1 \) or \(x > 0 \) are both stronger than \(x \neq 0 \)).
Worksheet (Reasoning)

- Problems: 1, 3, 7
 - Take ~10 minutes to get where you can

- Find a partner and work with them

- Let me know if you feel stuck

- We’ll walk through some solutions afterwards
Worksheet – problem 1

\[
\begin{align*}
\{ x \geq 0 \land y \geq 0 \} \\
y = 16; \\
\{ x \geq 0 \land y = 16 \} \\
x = x + y; \\
\{ x \geq 16 \land y = 16 \} \\
x = \sqrt{x}; \\
\{ x \geq 4 \land y = 16 \} \\
y = y - x; \\
\{ x \geq 4 \land y = 16 - x \}
\Rightarrow \{ x \geq 4 \land y \leq 12 \}
\end{align*}
\]
Worksheet – problem 3

\[
\begin{align*}
\{ & x + 3 \cdot b - 4 > 0 \} \\
& a = x + b; \\
\{ & a + 2 \cdot b - 4 > 0 \} \\
& c = 2 \cdot b - 4; \\
\{ & a + c > 0 \} \\
& x = a + c; \\
\{ & x > 0 \}
\end{align*}
\]
Worksheet – problem 7

\[
\{ y > 23 \} \quad \{ y \geq 23 \}
\]

\[
\{ y = 23 \} \quad \{ y \geq 23 \}
\]

\[
\{ y < 0.23 \} \quad \{ y < 0.00023 \}
\]

\[
\{ x = y \ast z \} \quad \{ y = x / z \}
\]

\[
\{ \text{is_prime}(y) \} \quad \{ \text{is_odd}(y) \}
\]
Worksheet – problem 7

{{ \text{y > 23} }} \text{ is stronger than } {{ \text{y} \geq \text{23} }}

{{ \text{y = 23} }} \text{ is stronger than } {{ \text{y} \geq \text{23} }}

{{ \text{y < 0.23} }} \text{ is weaker than } {{ \text{y < 0.00023} }}

{{ \text{x = y * z} }} \text{ is incomparable with } {{ \text{y = x / z} }}

{{ \text{is_prime(y)} }} \text{ is incomparable with } {{ \text{is_odd(y)} }}
Worksheet – problem 7

\{ y > 23 \} is stronger than \{ y \geq 23 \}

\{ y = 23 \} is stronger than \{ y \geq 23 \}

\{ y < 0.23 \} is weaker than \{ y < 0.00023 \}

\{ x = y \ast z \} is incomparable with \{ y = x / z \}

\{ \text{is}_\text{prime}(y) \} is incomparable with \{ \text{is}_\text{odd}(y) \}
Worksheet – problem 7

{{ y > 23 }} is stronger than {{ y >= 23 }}

{{ y = 23 }} is stronger than {{ y >= 23 }}

{{ y < 0.23 }} is weaker than {{ y < 0.00023 }}

{{ x = y * z }} is incomparable with {{ y = x / z }}

{{ is_prime(y) }} is incomparable with {{ is_odd(y) }}
Worksheet – problem 7

\{ y > 23 \} is stronger than \{ y >= 23 \}

\{ y = 23 \} is stronger than \{ y >= 23 \}

\{ y < 0.23 \} is weaker than \{ y < 0.00023 \}

\{ x = y * z \} is incomparable with \{ y = x / z \}

\{ is_prime(y) \} is incomparable with \{ is_odd(y) \}
Worksheet – problem 7

{{ y > 23 }} is stronger than {{ y >= 23 }}

{{ y = 23 }} is stronger than {{ y >= 23 }}

{{ y < 0.23 }} is weaker than {{ y < 0.00023 }}

{{ x = y * z }} is incomparable with {{ y = x / z }}

{{ is_prime(y) }} is incomparable with {{ is_odd(y) }}
Questions?

• What is the most surprising thing about this?

• What is the most confusing thing?

• What will need a bit more thinking to digest?
If Statements
If Statements

Forward reasoning

\[
\begin{align*}
 &\{P\} \\
 &\text{if (cond)} \\
 &\quad S1 \\
 &\text{else} \\
 &\quad S2 \\
 &\{?\}
\end{align*}
\]
If Statements

Forward reasoning

\[
\begin{align*}
\{\{ P \}\} \\
& \text{if (cond)} \\
& \{\{ P \text{ and } \text{cond} \}\} \\
& S1 \\
& \text{else} \\
& \{\{ P \text{ and not } \text{cond} \}\} \\
& S2 \\
& \{\{ ? \}\}
\end{align*}
\]
If Statements

Forward reasoning

```plaintext
{{ P }}
if (cond)
    {{ P and cond }}
    S1
    {{ P1 }}
else
    {{ P and not cond }}
    S2
    {{ P2 }}
{{ ? }}
```
If Statements

Forward reasoning

\[
\begin{align*}
&P \quad \text{if (cond)} \\
&P \quad \text{S1} \\
&P1 \quad \text{else} \\
&P2 \\
&P1 \lor P2
\end{align*}
\]
If Statements

Backward reasoning

```{? `}
if (cond)
  S1
else
  S2
{{ Q `}
```
If Statements

Backward reasoning

```plaintext
{{ ? }}
if (cond)
  S1
  {{ Q }}
else
  S2
  {{ Q }}
  {{ Q }}
```
If Statements

Backward reasoning

```
{{ Q }}
if (cond)
  {{ Q1 }}
  S1
  {{ Q }}
else
  {{ Q2 }}
  S2
  {{ Q }}
{{ Q }}
```
If Statements

Backward reasoning

\[
\begin{align*}
&\{\text{cond and Q1 or } \\
&\quad \text{not cond and Q2 }\} \\
\text{if (cond)} \\
&\{\{ Q1 \}\} \\
&\text{S1} \\
&\{\{ Q \}\} \\
\text{else} \\
&\{\{ Q2 \}\} \\
&\text{S2} \\
&\{\{ Q \}\} \\
&\{\{ Q \}\}
\end{align*}
\]
If-Statement Example

Forward reasoning

{{{ }}
 if (x >= 0)
 y = x;
 else
 y = -x;
{{{ ??} }}
If-Statement Example

Forward reasoning

```plaintext
if (x >= 0)
  y = x;
else
  y = -x;
```

If-Statement Example

Forward reasoning

```java
{{ }}
if (x >= 0)
    {{ x >= 0 }}
y = x;
    {{ x >= 0 and y = x }}
else
    {{ x < 0 }}
y = -x;
    {{ x < 0 and y = -x }}
{{ ? }}
```
If-Statement Example

Forward reasoning

```plaintext
if (x >= 0)
    y = x;
else
    y = -x;

(x >= 0 and y = x) or (x < 0 and y = -x)
```
If-Statement Example

Forward reasoning

```plaintext
{{ }}
if (x >= 0)
    {{ x >= 0 }}
y = x;
    {{ x >= 0 and y = x }}
else
    {{ x < 0 }}
y = -x;
    {{ x < 0 and y = -x }}
{{ y = |x| }}
```
If-Statement Example

Forward reasoning

```plaintext
{{ }}
if (x >= 0)
  {{ x >= 0 }}
  y = x;
  {{ x >= 0 and y = x }}
else
  {{ x < 0 }}
  y = -x;
  {{ x < 0 and y = -x }}
{{ y = |x| }}
```

Warning: many write {{ y >= 0 }} here. That is true but it is *strictly* weaker. (It includes cases where y != x)
If-Statement Example

Forward reasoning

```
{{ }}
if (x >= 0)
  {{ x >= 0 }}
  y = x;
  {{ x >= 0 and y = x }}
else
  {{ x < 0 }}
  y = -x;
  {{ x < 0 and y = -x }}
{{ y = |x| }}
```

Backward reasoning

```
{{ ? }}
if (x >= 0)
  y = x;
else
  y = -x;
{{ y = |x| }}
```
If-Statement Example

Forward reasoning

\[
\begin{align*}
\{\{\}\} & \\
\text{if } (x \geq 0) & \\
\{\{ x \geq 0 \}\} & \\
y = x; & \\
\{\{ x \geq 0 \text{ and } y = x \}\} & \\
\text{else} & \\
\{\{ x < 0 \}\} & \\
y = -x; & \\
\{\{ x < 0 \text{ and } y = -x \}\} & \\
y = |x| & \\
\{\{ y = |x| \}\} &
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{\{ ? \}\} & \\
\text{if } (x \geq 0) & \\
y = x; & \\
\{\{ y = |x| \}\} & \\
\text{else} & \\
y = -x; & \\
\{\{ y = |x| \}\} & \\
y = |x| & \\
\{\{ y = |x| \}\} &
\end{align*}
\]
If-Statement Example

Forward reasoning

```plaintext
{}
if (x >= 0)
    {}
    y = x;
    {}
else
    {}
    y = -x;
    {}
{}

{{ y = |x| }}
```

Backward reasoning

```plaintext
{}
if (x >= 0)
    {}
    y = x;
    {}
else
    {}
    y = -x;
    {}
{}

{{ y = |x| }}
```
If-Statement Example

Forward reasoning

\{
\}
if (x >= 0)
\{
\} x >= 0
y = x;
\{
\} x >= 0 and y = x
else
\{
\} x < 0
y = -x;
\{
\} x < 0 and y = -x
\{
\} y = |x|

Backward reasoning

\{
\}
if (x >= 0)
\{
\} x >= 0
y = x;
\{
\} y = |x|
else
\{
\} x <= 0
y = -x;
\{
\} y = |x|
\{
\} y = |x|
If-Statement Example

Forward reasoning

```plaintext
{{ }}
if (x >= 0)
    {{ x >= 0 }}
y = x;
    {{ x >= 0 and y = x }}
else
    {{ x < 0 }}
y = -x;
    {{ x < 0 and y = -x }}
{{ y = |x| }}
```

Backward reasoning

```plaintext
{{ (x >= 0 and x >= 0) or (x < 0 and x <= 0) }}
if (x >= 0)
    {{ x >= 0 }}
y = x;
    {{ y = |x| }}
else
    {{ x <= 0 }}
y = -x;
    {{ y = |x| }}
{{ y = |x| }}
```
If-Statement Example

Forward reasoning

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >= 0</td>
<td>if (x >= 0)</td>
</tr>
<tr>
<td></td>
<td>y = x;</td>
</tr>
<tr>
<td>x < 0</td>
<td>else</td>
</tr>
<tr>
<td></td>
<td>y = -x;</td>
</tr>
</tbody>
</table>

Backward reasoning

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >= 0 or x < 0</td>
<td>if (x >= 0)</td>
</tr>
<tr>
<td></td>
<td>y = x;</td>
</tr>
<tr>
<td></td>
<td>else</td>
</tr>
<tr>
<td></td>
<td>y =</td>
</tr>
</tbody>
</table>
If-Statement Example

Forward reasoning

```plaintext
if (x >= 0)
  y = x;
  {{ x >= 0 and y = x }}
else
  y = -x;
  {{ x < 0 and y = -x }}
{{ y = |x| }}
```

Backward reasoning

```plaintext
if (x >= 0)
  y = x;
  {{ y = |x| }}
else
  y = -x;
  {{ y = |x| }}
```
Conditionals, summary

Forward reasoning
- `{P}`
 - if `(b)`
 - `{P ∧ b}`
 - `S_1`
 - `{Q_1}`
 - else
 - `{P ∧ !b}`
 - `S_2`
 - `{Q_2}`
- `{Q_1 ∨ Q_2}`

Backward reasoning
- `{(b ∧ P_1) ∨ (!b ∧ P_2)}`
 - if `(b)`
 - `{P_1}`
 - `S_1`
 - `{Ø}`
 - else
 - `{P_2}`
 - `S_2`
 - `{Ø}`
- `{Ø}`
Worksheet (Conditionals)

- Problems: 2, 4, 6
 - Take ~10 minutes to get where you can

- Find a partner and work with them

- Let me know if you feel stuck

- We’ll walk through some solutions afterwards
Worksheet – problem 2

```java
{{ true }}
if (x > 0) {
   {{ x > 0 }}
y = 2 * x;
   {{ x > 0 ∧ y = 2x }}
} else {
   {{ x <= 0 }}
y = -2 * x;
   {{ x <= 0 ∧ y = -2x }}
}
{{ (x > 0 ∧ y = 2x) ∨ (x <= 0 ∧ y = -2x) }}
⇒ {{ y = 2|x| }}
```
Worksheet – problem 4

\{\{ \ y > 15 \ \lor \ (y \leq 5 \ \land \ y + z > 17) \ \}\}

if (y > 5) {
 \{\{ \ y > 15 \ \}\}
 x = y + 2
 \{\{ \ x > 17 \ \}\}
} else {
 \{\{ \ y + z > 17 \ \}\}
 x = y + z;
 \{\{ \ x > 17 \ \}\}
}
\{\{ \ x > 17 \ \}\}
{{ true }}
if (x < y) {
 {{ true ∧ x < y }}
 m = x;
 {{ x < y ∧ m = x }}
} else {
 {{ true ∧ x ≥ y }}
 m = y;
 {{ x ≥ y ∧ m = y }}
}

{{ (x < y ∧ m = x) ∨ (x ≥ y ∧ m = y) }}
⇒ {{ m = min(x, y) }}
Worksheet – problem 6 (backward)

\[
\{ \text{true} \} \iff \\
\{ (x \leq y \land x < y) \lor (y \leq x \land x \geq y) \} \\
\text{if } (x < y) \{ \\
\quad \{ x = \text{min}(x, y) \} \iff \{ x \leq y \} \\
\quad m = x; \\
\quad \{ m = \text{min}(x, y) \} \\
\} \text{ else } \{ \\
\quad \{ y = \text{min}(x, y) \} \iff \{ x \geq y \} \\
\quad m = y; \\
\quad \{ m = \text{min}(x, y) \} \\
\}
\{ m = \text{min}(x, y) \}
\]
Before next lecture...

1. Familiarize yourself with website:
 http://courses.cs.washington.edu/courses/cse331/22su/
 - read the syllabus
 - read the academic integrity policy
 - find the homework list
 - find the link to Canvas

2. Do HW1 tonight! (reminder: deadline is 11pm)
 - submit a PDF on Gradescope
 - limit this to at most 90 min
 - do not use formal reasoning