CSE 331

Software Design & Implementation Topic: Course Wrap-up

Discussion: What was the most valuable thing you learned this summer?

Reminders

- Please fill out course evals ASAP
 - Very valuable to me as a new instructor!

Upcoming Deadlines

- Submit all work by today at 11pm
- Check Canvas assignment grades on Monday

Last Time...

- End-of-quarter timeline
 - Lectures
 - Final Grades
- Short discussion
 - Accessibility

Today's Agenda

- Project Demos
- Course Wrap-up

Grading Timeline

- All work needs to be submitted to us by Friday at 11pm
- Course staff will finish grading HW9 and regrades by Sunday evening
- Grades will be posted on Canvas on late Sunday night
 - You should check that these are consistent with what you expected!
- Soham will calculate final GPA based on these grades on Monday
 - This is when I will account for extra credit and special circumstances
- Grades due to the university on Tuesday at noon

Project Demos

CSE 331

What was it all about?

But first....

Huge thanks to the folks who made it work

Course staff: 5 Amazing TAs:

Sparsh Binjrajka, Katherine Murphy, Reshabh Sharma, Justin Tysdal, and David Xu.

This course is itself a sophisticated (or at least really, really complicated) system requiring savvy design and implementation

And a big thanks to **you** for all you've done!

4 slides from Lecture 1...

What are the goals of CSE 331?

Learn the skills to be able to contribute to a modern software project

 move from CSE 143 problems toward what you'll see in industry and in upper-level courses

Specifically, how to write code of

- higher quality
- increased complexity

We will discuss *tools* and *techniques* to help with this and the *concepts* and *ideas* behind them

- there are timeless principles to both
- widely used across the industry

What is high quality?

Code is high quality when it is

1. Correct

Everything else is of secondary importance

Easy to change Most work is making changes to existing systems

3. Easy to **understand**Needed for 1 & 2 above

What we will cover in CSE 331

- Everything we cover relates to the 4 goals
- We'll use Java but the principles apply in any setting

Correctness

- 1. Tools
 - Git, IntelliJ, JUnit, Javadoc, ...
 - Java libraries: equality & hashing
 - Adv. Java: generics, assertions, ...
 - debugging
- 2. Inspection
 - reasoning about code
 - specifications
- 3. Testing
 - test design
 - coverage

Changeability

- specifications, ADTs
- listeners & callbacks

Understandability

- specifications, ADTs
- Adv. Java: exceptions
- subtypes

Modularity

- module design & design patterns
- event-driven programming, MVC, GUIs

Back to Goals

- CSE 331 will teach you to how to write correct programs
- What does it mean for a program to be correct?
 - Specifications
- What are ways to achieve correctness?
 - Principled design and development
 - Abstraction and modularity
 - Documentation
- What are ways to verify correctness?
 - Testing
 - Reasoning and verification

Some new slides to tie the pieces together...

Divide and conquer: Modularity, abstraction, specs

No one person can understand all of a realistic system

- Modularity permits focusing on just one part
- Abstraction enables ignoring detail
- Specifications (and documentation) formally describe behavior
- Reasoning relies on all three to understand/fix errors
 - Or avoid them in the first place
 - Proving, testing, debugging: all are intellectually challenging

How CSE 331 fits together

Lectures: ideas ⇒ Assignments: get practice

Specifications \Rightarrow Design classes

Testing \Rightarrow Write tests

Subtyping \Rightarrow Write subclasses

Equality & identity \Rightarrow Override equals, use collections

Generics \Rightarrow Write generic classes

Design patterns \Rightarrow Larger designs; MVC

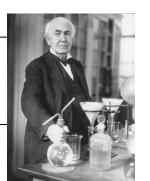
Reasoning, debugging ⇒ Correctness, testing

Events \Rightarrow GUIs

Systems integration \Rightarrow N/A

What you have learned in CSE 331

Compare your skills today to 10 weeks ago


- Theory: abstraction, specification, design
- Practice: implementation, testing
- Theory & practice: correctness

Bottom line aspiration: Much of what we've done would be *easy* for you today This is a measure of how much you have learned

There is no such thing as a "born" programmer!

Genius is 1% inspiration and 99% perspiration.

Thomas A. Edison

What you will learn later

- Your next project can be much more ambitious
 - But beware of "second system" effect
- Know your limits
 - Be humble (reality helps you with this)
- You will continue to learn
 - Building interesting systems is never easy
 - Like any worthwhile endeavor
 - Practice is a good teacher
 - Requires thoughtful introspection
 - Don't learn only by trial and error!
 - Voraciously consume ideas and tools

What comes next?

Courses

- CSE 403 Software Engineering
 - Focuses more on requirements, software lifecycle, teamwork
- Capstone projects
- Any class that requires software design and implementation

Research

- In software engineering & programming systems
- In any topic that involves software

Having an impact on the world

- Jobs (and job interviews)
- Larger programming projects

Last slide

- System building is fun!
 - It's even more fun when you're successful!!
- Pay attention to what matters
 - Take advantage of the techniques and tools you've learned (and will learn!)
- On a personal note:
 - Don't be a stranger: I love to hear how you do in CSE and beyond as alumni
 - Students are amazing; I believe in you! ☺
- Closing thoughts?

Before next class...

- Wrap-up any regrades for HW1-8
 - Won't accept late work after the last day of class
- Fill out course evaluations for me and the TAs
 - Also remember to nominate your TA
- Complete the Google Form about additional work on Ed
 - Tell me what other contributions you made to the course
- Check Canvas grades on Monday