
CSE 331 Summer 2022

Software Design & Implementation

Topic: Design Patterns I

CSE 331

💬 Discussion: What do you do to prevent being burned out?

CSE 331 Summer 2022

Reminders

• No extensions on HW9 (one late day only)
• Will not accept any work after Aug. 19 (Friday) at 11pm

• Prep. Quiz: HW8 due Monday (8/08)

• HW8 due Thursday (8/11)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Examples
• Messaging App

• Debugging

• History of Design Patterns
• Creational Design Patterns

• Factories
• Builder
• Prototype
• Singleton
• Interning

CSE 331 Summer 2022

What is a design pattern?

A standard solution to a common programming problem

– solution is usually language independent

– sometimes a problem with some programming languages

Often a technique for making code more flexible [modularity]

– reduces coupling among program components (at some cost)

Shorthand description of a software design [readability]

– a high-level programming idiom

– well-known terminology improves communication

– makes it easier to think of using the technique

A couple familiar examples….

CSE 331 Summer 2022

Example 1: Observer

Problem: other code needs to be called each time state changes, but…

– we would like the component to be reusable

– can’t hard-code calls to everything that needs to be called

Solution:

– object maintains a list of observers with a known interface

– calls a method on each observer when state changes

Disadvantages:

– code can be harder to understand

– wastes memory by maintaining a list of objects that are known a priori
(and are always the same)

CSE 331 Summer 2022

Example 2: Iterator

Problem: accessing all members of a collection requires performing

a specialized traversal for each data structure

– (makes clients strongly coupled to that data structure)

Solution:

– the implementation performs traversals, does bookkeeping

– results are sent to clients via a standard interface (e.g., hasNext(), next())

What are the disadvantages of this?

CSE 331 Summer 2022

Example 2: Iterator

Problem: accessing all members of a collection requires performing

a specialized traversal for each data structure

– (makes clients strongly coupled to that data structure)

Solution:

– the implementation performs traversals, does bookkeeping

– results are sent to clients via a standard interface (e.g., hasNext(), next())

Disadvantages:

– less efficient: creates extra objects, runs extra code

– iteration order fixed by the implementation, not the client
(you can have return different types of iterators though...)

CSE 331 Summer 2022

Why (more) design patterns?

Design patterns are intended to capture common solutions / idioms, name
them, make them easy to use to guide design

– language independent

– high-level designs, not specific “coding tricks”

They increase your vocabulary and your intellectual toolset

Often important to fix a problem in the underlying language:

– limitations of Java constructors

– lack of named parameters to methods

– lack of multiple dispatch

CSE 331 Summer 2022

Why not (more) design patterns?

As with everything else, do not overuse them

– introducing new abstractions to your program has a cost

• it can make the code more complicated

• it takes time

– don’t fix what isn’t broken

• wait until you have good evidence that you will run into the problem that
pattern is designed to solve

CSE 331 Summer 2022

Origin of term

The “Gang of Four” (GoF)

– Gamma, Helm, Johnson, Vlissides

– examples in C++ and SmallTalk

Found they shared several “tricks” and decided to codify them

– a key rule was that nothing could become a pattern unless
they could identify at least three real [different] examples

– for object-oriented programming

• some patterns more general

• others compensate for OOP shortcomings

CSE 331 Summer 2022

P atterns vs patterns

The phrase pattern has been overused since GoF book

Often used as “[somebody says] X is a good way to write programs”

– and “anti-pattern” as “Y is a bad way to write programs”

These are useful, but GoF-style patterns are more important

– they are used to solve many otherwise difficult problems

– are language independent

– well-documented

– (most likely) will be around for a long time

CSE 331 Summer 2022

An example GoF pattern

For some class C, guarantee that at run-time there is exactly one (globally visible)
instance of C

First, why might you want this?

– what design goals are achieved?

Second, how might you achieve this?

– how to leverage language constructs to enforce the design

A pattern has a recognized name

– this is the Singleton pattern

CSE 331 Summer 2022

Possible reasons for Singleton

• One RandomNumber generator

• One KeyboardReader, Logger, etc…

• One CampusPaths?

• Have an object with fields / methods that are “like public, static fields / methods”
but have a constructor decide their values

– cannot be static because need run time info to create

– e.g., have main decide which files to give CampusPaths

– rest of the code can assume it exists

• Other benefits in certain situations

– could delay expensive constructor until needed

CSE 331 Summer 2022

public class Foo {

private static final Foo instance = new Foo();

// private constructor prevents instantiation outside class

private Foo() { … }

public static Foo getInstance() {

return instance;

}

// ...instance methods as usual

}

How: multiple approaches

Eager allocation of
instance

CSE 331 Summer 2022

How: multiple approaches

public class Foo {

private static Foo instance;

// private constructor prevents instantiation outside class

private Foo() { … }

public static synchronized Foo getInstance() {

if (instance == null) {

instance = new Foo();

}

return instance;

}

// ...instance methods as usual

}

Lazy allocation of
instance

CSE 331 Summer 2022

GoF patterns: three categories

Creational Patterns are about the object-creation process

Factory Method, Abstract Factory, Singleton, Builder, Prototype, …

Structural Patterns are about how objects/classes can be combined

Adapter, Bridge, Composite, Decorator, Façade, Flyweight, Proxy, …

Behavioral Patterns are about communication among objects

Command, Interpreter, Iterator, Mediator, Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE 331 Summer 2022

Creational patterns

Especially large number of creational patterns

Key reason is that Java constructors have limitations...

1. Can't return a subtype of the class

2. Can’t reuse an existing object

3. Don’t have useful names

Factories: patterns for how to create new objects

– Factory method, Factory object / Builder, Prototype

Sharing: patterns for reusing objects

– Singleton, Interning

CSE 331 Summer 2022

Motivation for factories:
Changing implementations

Super-types support multiple implementations

interface Matrix { ... }

class SparseMatrix implements Matrix { ... }

class DenseMatrix implements Matrix { ... }

Clients use the supertype (Matrix)

BUT still call SparseMatrix or DenseMatrix constructor

– must decide concrete implementation somewhere

– might want to make the decision in one place

• rather than all over in the code

– part that knows what to create could be far from uses

– factory methods put this decision behind an abstraction

CSE 331 Summer 2022

Use of static factory methods

class MatrixFactory {

public static Matrix createMatrix(float density) {

return (density <= 0.1) ?

new SparseMatrix() : new DenseMatrix();

}

}

Clients call createMatrix instead of a particular constructor

Advantages:

– to switch the implementation, change only one place

CSE 331 Summer 2022

DateFormat factory methods

DateFormat class encapsulates how to format dates & times

– options: just date, just time, date+time, w/ timezone, etc.

– instead of passing all options to constructor, use factories

– the subtype created by factory call need not be specified

– factory methods (unlike constructors) have useful names

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();
DateFormat df3 = DateFormat.getDateInstance(

DateFormat.FULL, Locale.FRANCE);

Date today = new Date();

df1.format(today); // "Jul 4, 1776"

df2.format(today); // "10:15:00 AM"
df3.format(today); // "jeudi 4 juillet 1776"

CSE 331 Summer 2022

Example: Bicycle race

class Race {

public Race() {

Bicycle bike1 = new Bicycle();

Bicycle bike2 = new Bicycle();

// assume lots of other code here

}

}

Suppose there are different types of races

Each race needs its own type of bicycle…

CSE 331 Summer 2022

Example: Tour de France

class TourDeFrance extends Race {

public TourDeFrance() {

Bicycle bike1 = new RoadBicycle();

Bicycle bike2 = new RoadBicycle();

…

}

…

}

The Tour de France needs a road bike…

CSE 331 Summer 2022

Example: Cyclocross

class Cyclocross extends Race {

public Cyclocross() {

Bicycle bike1 = new MountainBicycle();

Bicycle bike2 = new MountainBicycle();

…

}

…

}

And the cyclocross needs a mountain bike.

Problem: must override the constructor in every Race subclass just to use a different
subclass of Bicycle

CSE 331 Summer 2022

Factory method for Bicycle

class Race {

Bicycle bike1, bike2;

Bicycle createBicycle() { return new Bicycle(); }

public Race() {

bike1 = createBicycle();

bike2 = createBicycle();

...

}

}

Solution: use a factory method to avoid choosing which type to create

– let the subclass decide by overriding createBicycle

CSE 331 Summer 2022

Subclasses override factory method

class TourDeFrance extends Race {

Bicycle createBicycle() {

return new RoadBicycle();

}

}

class Cyclocross extends Race {

Bicycle createBicycle() {

return new MountainBicycle();

}

}

• Requires foresight to use factory method in superclass constructor

• Subtyping in the overriding methods!

• Supports other types of reuse (e.g. addBicycle could use it too)

CSE 331 Summer 2022

A Brief Aside

Did you see what that code just did?

– it called a subclass method from a constructor!

– factory methods should usually be static methods

– EJ: Either design for inheritance or prohibit it (make class final)

CSE 331 Summer 2022

Factory objects

• Let’s move the method into a separate class

– so that it is part of a factory object

• Advantages:

– no longer risks horrifying bugs

– can pass factories around at runtime

• e.g., let main decide which one to use

• Disadvantages:

– uses bit of extra memory

– debugging can be more complex when decision of which object to create is far
from where it is used

CSE 331 Summer 2022

Factory objects encapsulate factory method(s)

class BicycleFactory {

Bicycle createBicycle() {

return new Bicycle();

}

}

class RoadBicycleFactory extends BicycleFactory {

Bicycle createBicycle() {

return new RoadBicycle();

}

}

class MountainBicycleFactory extends BicycleFactory {

Bicycle createBicycle() {

return new MountainBicycle();

}

}

Note: Ok to return subtypes of Bicycle!

CSE 331 Summer 2022

Using a factory object

class Race {
BicycleFactory bfactory;

public Race(BicycleFactory f) {
bfactory = f;
Bicycle bike1 = bfactory.createBicycle();
Bicycle bike2 = bfactory.createBicycle();
…

}

public Race() { this(new BicycleFactory()); }
…

}

Setting up the flexibility here:
• Factory object stored in a field, set by constructor
• Can take the factory as a constructor-argument
• But an implementation detail (?), so 0-argument constructor too

– Java detail: call another constructor in same class with this

CSE 331 Summer 2022

The subclasses

class TourDeFrance extends Race {
public TourDeFrance() {

super(new RoadBicycleFactory());
}

}

class Cyclocross extends Race {
public Cyclocross() {

super(new MountainBicycleFactory());
}

}

Voila!

– Just call the superclass constructor with a different factory
– Race class had foresight to delegate “what to do to create a bicycle” to the factory

object, making it more reusable

CSE 331 Summer 2022

Separate control over bicycles and races

class TourDeFrance extends Race {

public TourDeFrance() {
super(new RoadBicycleFactory()); // or this(…)

}

public TourDeFrance(BicycleFactory f) {
super(f);

}
}

By having factory-as-argument option, we can allow arbitrary mixing by client:
new TourDeFrance(new TricycleFactory())

Less useful in this example: Swapping in different factory object whenever you want

Reminder: Not shown here is also using factories for creating races

CSE 331 Summer 2022

Builder

Builder: object with methods to describe object and then create it

– fits well with immutable classes when clients want to add data a bit at a time

• (mutable Builder creates immutable object)

Example 1: StringBuilder

StringBuilder buf = new StringBuilder();

buf.append(“Total distance: ”);

buf.append(dist);

buf.append(“ meters”);

return buf.toString();

CSE 331 Summer 2022

Builder

Builder: object with methods to describe object and then create it

– fits well with immutable classes when clients want to add data a bit at a time

• (mutable Builder creates immutable object)

Example 2: Graph.Builder

– addNode, addEdge, and createGraph methods

– (static inner class Builder can use private constructors)

– containsNode etc. may not need to be especially fast

CSE 331 Summer 2022

Enforcing Constraints with Types

• These examples use the type system to enforce constraints

• Constraint is that some methods should not be called until after the “finish”
method has been called

– solve by splitting type into two parts

– Builder part has everything that can be called before “finish”

– normal object has everything that can be called after “finish”

• This approach can be used with other types of constraints

• Instead of asking clients to remember not to violate them, see if you can use type
system to enforce them

– use tools rather than just reasoning

• (This can be done in a general manner, but it’s way out of scope for this class.)

CSE 331 Summer 2022

Builder Idioms: return this

class FooBuilder {

public FooBuilder setX(int x) {

this.x = x;

return this;

}

public FooBuilder setY(int y) { … }

public Foo build() { ... }

}

You can use this type of Builder like so:

Foo f = new FooBuilder().setX(1).setY(2).build();

CSE 331 Summer 2022

Methods with Many Arguments

• Builders useful for cleaning up methods with too many arguments

– recall the problem that clients can easily mix up argument order

E.g., turn this

myMethod(x, y, true, false, true);

into this

myMethod(x, y, Options.create()

.setA(true)

.setB(false)

.setC(true).build());

This simulates named (rather than positional) argument passing.

CSE 331 Summer 2022

Prototype pattern

• Each object is itself a factory:

– objects contain a clone method that creates a copy

• Useful for objects that are created via a process

– Example: java.awt.geom.AffineTransform

• create by a sequence of calls to translate, scale, etc.

• easiest to make a similar one by copying and changing

– Example: android.graphics.Paint

– Example: JavaScript classes

• use prototypes so every instance doesn’t have all methods stored as fields

CSE 331 Summer 2022

Factories: summary

Goal: want more flexible abstractions for what class to instantiate

Factory method

– call a method to create the object

– method can do any computation and return any subtype

Factory object (also Builder)

– Factory has factory methods for some type(s)

– Builder has methods to describe object and then create it

Prototype

– every object is a factory, can create more objects like itself

– call clone to get a new object of same subtype as receiver

CSE 331 Summer 2022

Before next class...

1. Finish Prep. Quiz: HW8

– Practice some React questions

2. Begin implementing HW8 early!

– React is new, you will likely have many questions

– See examples from lecture + section for ideas

