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💬 Discussion: What do you do to prevent being burned out?
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Reminders

• No extensions on HW9 (one late day only)
• Will not accept any work after Aug. 19 (Friday) at 11pm

• Prep. Quiz: HW8 due Monday (8/08)

• HW8 due Thursday (8/11)

Upcoming Deadlines



Last Time…
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Today’s Agenda

• Examples
• Messaging App

• Debugging

• History of Design Patterns
• Creational Design Patterns

• Factories
• Builder
• Prototype
• Singleton
• Interning
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What is a design pattern?

A standard solution to a common programming problem

– solution is usually language independent

– sometimes a problem with some programming languages

Often a technique for making code more flexible [modularity]

– reduces coupling among program components (at some cost)

Shorthand description of a software design [readability]

– a high-level programming idiom

– well-known terminology improves communication

– makes it easier to think of using the technique

A couple familiar examples….
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Example 1:  Observer

Problem:  other code needs to be called each time state changes, but…

– we would like the component to be reusable

– can’t hard-code calls to everything that needs to be called

Solution:

– object maintains a list of observers with a known interface

– calls a method on each observer when state changes

Disadvantages:

– code can be harder to understand

– wastes memory by maintaining a list of objects that are known a priori 
(and are always the same)
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Example 2:  Iterator

Problem: accessing all members of a collection requires performing

a specialized traversal for each data structure

– (makes clients strongly coupled to that data structure)

Solution:

– the implementation performs traversals, does bookkeeping

– results are sent to clients via a standard interface (e.g., hasNext(), next())

What are the disadvantages of this?
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Example 2:  Iterator

Problem: accessing all members of a collection requires performing

a specialized traversal for each data structure

– (makes clients strongly coupled to that data structure)

Solution:

– the implementation performs traversals, does bookkeeping

– results are sent to clients via a standard interface (e.g., hasNext(), next())

Disadvantages:

– less efficient: creates extra objects, runs extra code

– iteration order fixed by the implementation, not the client
(you can have return different types of iterators though...)
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Why (more) design patterns?

Design patterns are intended to capture common solutions / idioms, name 
them, make them easy to use to guide design

– language independent

– high-level designs, not specific “coding tricks”

They increase your vocabulary and your intellectual toolset

Often important to fix a problem in the underlying language:

– limitations of Java constructors

– lack of named parameters to methods

– lack of multiple dispatch
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Why not (more) design patterns?

As with everything else, do not overuse them

– introducing new abstractions to your program has a cost

• it can make the code more complicated

• it takes time

– don’t fix what isn’t broken

• wait until you have good evidence that you will run into the problem that 
pattern is designed to solve
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Origin of term

The “Gang of Four” (GoF)

– Gamma, Helm, Johnson, Vlissides

– examples in C++ and SmallTalk

Found they shared several “tricks” and decided to codify them

– a key rule was that nothing could become a pattern unless 
they could identify at least three real [different] examples

– for object-oriented programming

• some patterns more general

• others compensate for OOP shortcomings
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P                atterns vs patterns

The phrase pattern has been overused since GoF book

Often used as “[somebody says] X is a good way to write programs”

– and “anti-pattern” as “Y is a bad way to write programs”

These are useful, but GoF-style patterns are more important

– they are used to solve many otherwise difficult problems

– are language independent

– well-documented

– (most likely) will be around for a long time
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An example GoF pattern

For some class C, guarantee that at run-time there is exactly one (globally visible) 
instance of C

First, why might you want this?

– what design goals are achieved?

Second, how might you achieve this?

– how to leverage language constructs to enforce the design

A pattern has a recognized name

– this is the Singleton pattern
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Possible reasons for Singleton

• One RandomNumber generator

• One KeyboardReader, Logger, etc…

• One CampusPaths?

• Have an object with fields / methods that are “like public, static fields / methods” 
but have a constructor decide their values

– cannot be static because need run time info to create

– e.g., have main decide which files to give CampusPaths

– rest of the code can assume it exists

• Other benefits in certain situations

– could delay expensive constructor until needed
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public class Foo {

private static final Foo instance = new Foo(); 

// private constructor prevents instantiation outside class

private Foo() { … }

public static Foo getInstance() {

return instance;

}

// ...instance methods as usual

}

How: multiple approaches

Eager allocation of 
instance
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How: multiple approaches

public class Foo {

private static Foo instance;

// private constructor prevents instantiation outside class

private Foo() { … }

public static synchronized Foo getInstance() {

if (instance == null) {

instance = new Foo();

} 

return instance;

}

// ...instance methods as usual

}

Lazy allocation of 
instance
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GoF patterns: three categories

Creational Patterns are about the object-creation process

Factory Method, Abstract Factory, Singleton, Builder, Prototype, …

Structural Patterns are about how objects/classes can be combined

Adapter, Bridge, Composite, Decorator, Façade, Flyweight, Proxy, …

Behavioral Patterns are about communication among objects

Command, Interpreter, Iterator, Mediator, Observer, State, Strategy, Chain of 
Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already 
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Creational patterns

Especially large number of creational patterns

Key reason is that Java constructors have limitations...

1. Can't return a subtype of the class

2. Can’t reuse an existing object

3. Don’t have useful names

Factories: patterns for how to create new objects

– Factory method, Factory object / Builder, Prototype

Sharing: patterns for reusing objects

– Singleton, Interning
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Motivation for factories:
Changing implementations

Super-types support multiple implementations

interface Matrix { ... }

class SparseMatrix implements Matrix { ... }

class DenseMatrix implements Matrix { ... }

Clients use the supertype (Matrix)

BUT still call SparseMatrix or DenseMatrix constructor

– must decide concrete implementation somewhere

– might want to make the decision in one place

• rather than all over in the code

– part that knows what to create could be far from uses

– factory methods put this decision behind an abstraction
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Use of static factory methods

class MatrixFactory {

public static Matrix createMatrix(float density) { 

return (density <= 0.1) ?

new SparseMatrix() : new DenseMatrix();

}

}

Clients call createMatrix instead of a particular constructor

Advantages:

– to switch the implementation, change only one place
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DateFormat factory methods

DateFormat class encapsulates how to format dates & times

– options: just date, just time, date+time, w/ timezone, etc.

– instead of passing all options to constructor, use factories

– the subtype created by factory call need not be specified

– factory methods (unlike constructors) have useful names

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();
DateFormat df3 = DateFormat.getDateInstance(

DateFormat.FULL, Locale.FRANCE);

Date today = new Date();

df1.format(today);  // "Jul 4, 1776"

df2.format(today);  // "10:15:00 AM"
df3.format(today);  // "jeudi 4 juillet 1776"
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Example:  Bicycle race

class Race {

public Race() {    

Bicycle bike1 = new Bicycle();    

Bicycle bike2 = new Bicycle();    

// assume lots of other code here

}

}

Suppose there are different types of races

Each race needs its own type of bicycle…
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Example:  Tour de France

class TourDeFrance extends Race {

public TourDeFrance() {

Bicycle bike1 = new RoadBicycle();

Bicycle bike2 = new RoadBicycle();

…

}

…

}

The Tour de France needs a road bike…
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Example:  Cyclocross

class Cyclocross extends Race {

public Cyclocross() {

Bicycle bike1 = new MountainBicycle();

Bicycle bike2 = new MountainBicycle();

…

}

…

}

And the cyclocross needs a mountain bike.

Problem: must override the constructor in every Race subclass just to use a different 
subclass of Bicycle
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Factory method for Bicycle

class Race {

Bicycle bike1, bike2;

Bicycle createBicycle() { return new Bicycle(); }

public Race() {

bike1 = createBicycle();

bike2 = createBicycle();

...

}

}

Solution: use a factory method to avoid choosing which type to create

– let the subclass decide by overriding createBicycle
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Subclasses override factory method

class TourDeFrance extends Race {

Bicycle createBicycle() {

return new RoadBicycle();

}

}

class Cyclocross extends Race {

Bicycle createBicycle() {

return new MountainBicycle();

}

}

• Requires foresight to use factory method in superclass constructor

• Subtyping in the overriding methods!

• Supports other types of reuse (e.g. addBicycle could use it too)
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A Brief Aside

Did you see what that code just did?

– it called a subclass method from a constructor!

– factory methods should usually be static methods

– EJ: Either design for inheritance or prohibit it (make class final)
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Factory objects

• Let’s move the method into a separate class

– so that it is part of a factory object

• Advantages:

– no longer risks horrifying bugs

– can pass factories around at runtime

• e.g., let main decide which one to use

• Disadvantages:

– uses bit of extra memory

– debugging can be more complex when decision of which object to create is far 
from where it is used



CSE 331 Summer 2022

Factory objects encapsulate factory method(s)

class BicycleFactory {

Bicycle createBicycle() { 

return new Bicycle(); 

}

}

class RoadBicycleFactory extends BicycleFactory {

Bicycle createBicycle() { 

return new RoadBicycle(); 

}

}

class MountainBicycleFactory extends BicycleFactory {

Bicycle createBicycle() { 

return new MountainBicycle();

}

}

Note: Ok to return subtypes of Bicycle!
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Using a factory object

class Race {
BicycleFactory bfactory;

public Race(BicycleFactory f) {
bfactory = f;
Bicycle bike1 = bfactory.createBicycle();
Bicycle bike2 = bfactory.createBicycle();
…

}

public Race() { this(new BicycleFactory()); }
…

}

Setting up the flexibility here:
• Factory object stored in a field, set by constructor
• Can take the factory as a constructor-argument
• But an implementation detail (?), so 0-argument constructor too

– Java detail: call another constructor in same class with this
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The subclasses

class TourDeFrance extends Race {
public TourDeFrance() { 

super(new RoadBicycleFactory()); 
}

}

class Cyclocross extends Race {
public Cyclocross() { 

super(new MountainBicycleFactory());
}

}

Voila!

– Just call the superclass constructor with a different factory
– Race class had foresight to delegate “what to do to create a bicycle” to the factory 

object, making it more reusable
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Separate control over bicycles and races

class TourDeFrance extends Race {

public TourDeFrance() { 
super(new RoadBicycleFactory()); // or this(…)

}

public TourDeFrance(BicycleFactory f) {
super(f);

}
}

By having factory-as-argument option, we can allow arbitrary mixing by client: 
new TourDeFrance(new TricycleFactory())

Less useful in this example: Swapping in different factory object whenever you want

Reminder: Not shown here is also using factories for creating races
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Builder

Builder: object with methods to describe object and then create it

– fits well with immutable classes when clients want to add data a bit at a time

• (mutable Builder creates immutable object)

Example 1: StringBuilder

StringBuilder buf = new StringBuilder();

buf.append(“Total distance: ”);

buf.append(dist);

buf.append(“ meters”);

return buf.toString();
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Builder

Builder: object with methods to describe object and then create it

– fits well with immutable classes when clients want to add data a bit at a time

• (mutable Builder creates immutable object)

Example 2: Graph.Builder

– addNode, addEdge, and createGraph methods

– (static inner class Builder can use private constructors)

– containsNode etc. may not need to be especially fast
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Enforcing Constraints with Types

• These examples use the type system to enforce constraints

• Constraint is that some methods should not be called until after the “finish” 
method has been called

– solve by splitting type into two parts

– Builder part has everything that can be called before “finish”

– normal object has everything that can be called after “finish”

• This approach can be used with other types of constraints

• Instead of asking clients to remember not to violate them, see if you can use type 
system to enforce them

– use tools rather than just reasoning

• (This can be done in a general manner, but it’s way out of scope for this class.)
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Builder Idioms: return this

class FooBuilder {

public FooBuilder setX(int x) {

this.x = x;

return this;

}

public FooBuilder setY(int y) { … }

public Foo build() { ... }

}

You can use this type of Builder like so:

Foo f = new FooBuilder().setX(1).setY(2).build();
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Methods with Many Arguments

• Builders useful for cleaning up methods with too many arguments

– recall the problem that clients can easily mix up argument order

E.g., turn this

myMethod(x, y, true, false, true);

into this

myMethod(x, y, Options.create()

.setA(true)

.setB(false)

.setC(true).build());

This simulates named (rather than positional) argument passing.
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Prototype pattern

• Each object is itself a factory:

– objects contain a clone method that creates a copy

• Useful for objects that are created via a process

– Example: java.awt.geom.AffineTransform

• create by a sequence of calls to translate, scale, etc.

• easiest to make a similar one by copying and changing

– Example: android.graphics.Paint

– Example: JavaScript classes

• use prototypes so every instance doesn’t have all methods stored as fields
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Factories: summary

Goal: want more flexible abstractions for what class to instantiate

Factory method

– call a method to create the object

– method can do any computation and return any subtype

Factory object (also Builder)

– Factory has factory methods for some type(s)

– Builder has methods to describe object and then create it

Prototype

– every object is a factory, can create more objects like itself

– call clone to get a new object of same subtype as receiver
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Before next class...

1. Finish Prep. Quiz: HW8 

– Practice some React questions

2. Begin implementing HW8 early!

– React is new, you will likely have many questions

– See examples from lecture + section for ideas


